Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay.
Curr Pharm Des. 2011 Dec;17(35):3905-32. doi: 10.2174/138161211798357719.
Nitric oxide participates in a wide array of physiological processes, ranging from neurotransmission to precursor of cytotoxic effector molecules of the immune system. Although nitric oxide is a mildly reactive intermediary, it can act as a precursor of strong oxidants under pathological conditions associated with oxidative stress including cardiovascular, inflammatory and neurodegenerative disorders. Peroxynitrite, the reaction product of nitric oxide with superoxide radicals, emerges as one of the principal players of nitric oxidederived toxicity due to its facile formation and ability to react with several critical cellular targets including, thiols, proteins, lipids and DNA. The extent of "nitroxidative stress" is determined by several factors, including the concentration and exposure time to this reactive species or its derived radicals and by the ability of the cell to face the oxidative challenge by means of its antioxidant defenses. The inflicted biomolecular damage can result on minimal and reversible changes to cell and tissue physiology, to alteration in bioenergetics, disruption of DNA integrity, mitochondrial dysfunction and even cell death. Although dissecting the free radical chemistry pathways responsible of cell/tissue disturbance of oxidative signaling and promotion of oxidative damage arising from nitric oxide-derived oxidants in a biological context is a vast endeavor, is an ineludible task in order to generate a rational therapeutic approach to modulate nitroxidative stress. Several redox-based pharmacological strategies with a collection of compounds with varying mechanisms of action have been tested at the cellular, preclinical and even clinical levels, and some novel and promising developments are underway. This review deals with key kinetic and biochemical aspects of nitric oxide-derived oxidant formation and reactions in biological systems, emphasizing the current evidence at the biochemical, cell/tissue and animal/human levels that support a pathophysiological role for peroxynitrite and related species in human pathology. In addition, a selection of available pharmacological tools will be discussed as an effort to rationalize antioxidant and/or redox-based therapeutic interventions in disease models.
一氧化氮参与广泛的生理过程,从神经传递到免疫系统细胞毒性效应分子的前体。尽管一氧化氮是一种反应性较弱的中间体,但在与氧化应激相关的病理条件下,它可以作为强氧化剂的前体,包括心血管、炎症和神经退行性疾病。过氧亚硝酸盐是一氧化氮与超氧自由基反应的产物,由于其易于形成和能够与包括硫醇、蛋白质、脂质和 DNA 在内的几个关键细胞靶标反应,因此成为一氧化氮衍生毒性的主要参与者之一。“氮氧化物应激”的程度取决于几个因素,包括对这种反应性物质或其衍生自由基的浓度和暴露时间,以及细胞通过其抗氧化防御能力应对氧化挑战的能力。造成的生物分子损伤可能导致细胞和组织生理学的最小和可逆变化,改变生物能量学,破坏 DNA 完整性,线粒体功能障碍,甚至细胞死亡。尽管在生物背景下剖析负责细胞/组织干扰氧化信号和促进源自一氧化氮衍生氧化剂的氧化损伤的自由基化学途径是一项艰巨的任务,但这是生成合理的治疗方法来调节氮氧化物应激的不可或缺的任务。已经在细胞、临床前甚至临床水平上测试了几种基于氧化还原的药理学策略和一系列具有不同作用机制的化合物,并且正在进行一些新的有前途的开发。本文综述了生物系统中一氧化氮衍生氧化剂形成和反应的关键动力学和生化方面,强调了目前在生化、细胞/组织和动物/人类水平上的证据,支持过氧亚硝酸盐和相关物种在人类病理学中的病理生理学作用。此外,还讨论了一些可用的药理学工具,作为在疾病模型中合理化抗氧化剂和/或基于氧化还原的治疗干预的努力。