Suppr超能文献

基于数据的人类卵巢储备评估。

Data-driven assessment of the human ovarian reserve.

机构信息

School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK.

出版信息

Mol Hum Reprod. 2012 Feb;18(2):79-87. doi: 10.1093/molehr/gar059. Epub 2011 Sep 20.

Abstract

Human ovarian physiology is still poorly understood, with the factors and mechanisms that control initiation of follicular recruitment and loss remaining particularly unclear. Conventional hypothesis-led studies provide new data, results and insights, but datasets from individual studies are often small, allowing only limited interpretation. Great power is afforded by the aggregation of data from multiple studies into single datasets. In this paper, we describe how modern computational analysis of these datasets provides important new insights into ovarian function and has generated hypotheses that are testable in the laboratory. Specifically, we can hypothesize that age is the most important factor for variations in individual ovarian non-growing follicle (NGF) populations, that anti-Müllerian hormone (AMH) levels generally rise and fall in childhood years before peaking in the mid-twenties, and that there are strong correlations between AMH levels and both NGF populations and rates of recruitment towards maturation, for age ranges before and after peak AMH levels.

摘要

人类卵巢生理学仍未被充分理解,控制卵泡募集和损失的因素和机制尤其不清楚。传统的假设引导研究提供了新的数据、结果和见解,但来自单个研究的数据集往往较小,仅允许进行有限的解释。将来自多个研究的数据聚合到单个数据集中具有巨大的威力。在本文中,我们描述了如何通过对这些数据集进行现代计算分析,为卵巢功能提供了重要的新见解,并提出了可在实验室中进行测试的假设。具体来说,我们可以假设年龄是个体卵巢非生长卵泡(NGF)群体变化的最重要因素,抗缪勒管激素(AMH)水平在儿童时期普遍上升和下降,然后在二十多岁中期达到峰值,并且 AMH 水平与 NGF 群体和向成熟的募集率之间存在很强的相关性,适用于 AMH 水平之前和之后的年龄范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验