Maccubbin A E, Black J J, Dunn B P
Roswell Park Memorial Institute, Buffalo, New York 142163.
Sci Total Environ. 1990 May 1;94(1-2):89-104. doi: 10.1016/0048-9697(90)90366-3.
Fish were collected from sites in the chemically-contaminated Buffalo River, New York, and the Detroit River, Michigan. The sediments of these rivers have high levels of chemical contaminants, including polycyclic aromatic hydrocarbons (PAHs), and fish from these locations have high prevalences of liver cancer. To determine chemical-DNA interactions and a possible role for chemicals as a cause of the observed tumors, DNA was isolated from livers and was enzymatically digested to normal and adducted nucleotides. The DNA digests were enriched for hydrophobic, bulky adducts, either by preparative reverse phase high pressure liquid chromatography, or by selective nuclease P1 dephosphorylation of normal nucleotides. DNA-chemical adducts were then quantitated by 32P-postlabeling analysis. Regardless of the adduct enrichment procedure, the chromatograms derived from DNA of fish from polluted areas showed a diffuse, diagonal radioactive zone consisting, at least in part, of multiple overlapping discrete adduct spots. The behavior of the adducts in the diagonal radioactive zone and of their unlabeled precursors is consistent with their identification as nucleotide adducts of a variety of bulky, hydrophobic, aromatic genotoxic compounds. Analysis of bile demonstrated recent exposure to multi-ringed aromatic compounds.