Suppr超能文献

模拟微重力会增加白色念珠菌的丝状生长、生物膜形成、表型转换和抗微生物药物耐药性。

Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in Candida albicans.

机构信息

Immunology and Infectious Diseases, Montana State University , Bozeman, USA.

出版信息

Astrobiology. 2011 Oct;11(8):825-36. doi: 10.1089/ast.2011.0664. Epub 2011 Sep 21.

Abstract

Candida albicans is an opportunistic fungal pathogen responsible for a variety of cutaneous and systemic human infections. Virulence of C. albicans increases upon exposure to some environmental stresses; therefore, we explored phenotypic responses of C. albicans following exposure to the environmental stress of low-shear modeled microgravity. Upon long-term (12-day) exposure to low-shear modeled microgravity, C. albicans transitioned from yeast to filamentous forms at a higher rate than observed under control conditions. Consistently, genes associated with cellular morphology were differentially expressed in a time-dependent manner. Biofilm communities, credited with enhanced resistance to environmental stress, formed in the modeled microgravity bioreactor and had a more complex structure than those formed in control conditions. In addition, cells exposed to low-shear modeled microgravity displayed phenotypic switching, observed as a near complete transition from smooth to "hyper" irregular wrinkle colony morphology. Consistent with the presence of biofilm communities and increased rates of phenotypic switching, cells exposed to modeled microgravity were significantly more resistant to the antifungal agent Amphotericin B. Together, these data indicate that C. albicans adapts to the environmental stress of low-shear modeled microgravity by demonstrating virulence-associated phenotypes.

摘要

白色念珠菌是一种机会性真菌病原体,可导致多种皮肤和全身人类感染。白色念珠菌的毒力在暴露于某些环境压力时会增加;因此,我们探索了白色念珠菌在暴露于低剪切模拟微重力的环境压力后的表型反应。在长期(12 天)暴露于低剪切模拟微重力下,白色念珠菌从酵母向丝状形态的转变速度比在对照条件下观察到的要快。一致地,与细胞形态相关的基因以时间依赖性方式差异表达。生物膜群落由于增强了对环境压力的抵抗力而在模拟微重力生物反应器中形成,并且其结构比在对照条件下形成的生物膜群落更复杂。此外,暴露于低剪切模拟微重力的细胞表现出表型转换,表现为从光滑到“超”不规则皱折菌落形态的几乎完全转变。与生物膜群落的存在和表型转换率的增加一致,暴露于模拟微重力的细胞对抗真菌剂两性霉素 B 的抗性显著增强。总之,这些数据表明,白色念珠菌通过表现出与毒力相关的表型来适应低剪切模拟微重力的环境压力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验