Suppr超能文献

基于密集自适应马尔可夫链蒙特卡罗采样的快速运动跟踪。

Abrupt motion tracking via intensively adaptive Markov-chain Monte Carlo sampling.

机构信息

College of Information Engineering, Capital Normal University, Beijing 100048, China.

出版信息

IEEE Trans Image Process. 2012 Feb;21(2):789-801. doi: 10.1109/TIP.2011.2168414. Epub 2011 Sep 19.

Abstract

The robust tracking of abrupt motion is a challenging task in computer vision due to its large motion uncertainty. While various particle filters and conventional Markov-chain Monte Carlo (MCMC) methods have been proposed for visual tracking, these methods often suffer from the well-known local-trap problem or from poor convergence rate. In this paper, we propose a novel sampling-based tracking scheme for the abrupt motion problem in the Bayesian filtering framework. To effectively handle the local-trap problem, we first introduce the stochastic approximation Monte Carlo (SAMC) sampling method into the Bayesian filter tracking framework, in which the filtering distribution is adaptively estimated as the sampling proceeds, and thus, a good approximation to the target distribution is achieved. In addition, we propose a new MCMC sampler with intensive adaptation to further improve the sampling efficiency, which combines a density-grid-based predictive model with the SAMC sampling, to give a proposal adaptation scheme. The proposed method is effective and computationally efficient in addressing the abrupt motion problem. We compare our approach with several alternative tracking algorithms, and extensive experimental results are presented to demonstrate the effectiveness and the efficiency of the proposed method in dealing with various types of abrupt motions.

摘要

鲁棒的突变运动跟踪是计算机视觉中的一个具有挑战性的任务,因为它的运动不确定性很大。虽然已经提出了各种粒子滤波器和传统的马尔可夫链蒙特卡罗 (MCMC) 方法用于视觉跟踪,但这些方法往往存在众所周知的局部陷阱问题或较差的收敛速度。在本文中,我们在贝叶斯滤波框架中提出了一种用于突变运动问题的新的基于采样的跟踪方案。为了有效地处理局部陷阱问题,我们首先将随机逼近蒙特卡罗 (SAMC) 采样方法引入到贝叶斯滤波器跟踪框架中,其中滤波分布在采样过程中自适应地估计,从而实现对目标分布的良好近似。此外,我们提出了一种新的具有密集自适应的 MCMC 采样器,以进一步提高采样效率,它结合了基于密度网格的预测模型和 SAMC 采样,给出了一个提案自适应方案。该方法在处理突变运动问题时是有效和计算高效的。我们将我们的方法与几种替代跟踪算法进行了比较,并给出了大量实验结果,以证明所提出的方法在处理各种类型的突变运动时的有效性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验