Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371, USA.
Genetics. 2011 Dec;189(4):1473-86. doi: 10.1534/genetics.111.131854. Epub 2011 Sep 21.
Inbreeding depression and genetic load have been widely observed, but their genetic basis and effects on fitness during the life cycle remain poorly understood, especially for marine animals with high fecundity and high, early mortality (type-III survivorship). A high load of recessive mutations was previously inferred for the Pacific oyster Crassostrea gigas, from massive distortions of zygotic, marker segregation ratios in F(2) families. However, the number, genomic location, and stage-specific onset of mutations affecting viability have not been thoroughly investigated. Here, we again report massive distortions of microsatellite-marker segregation ratios in two F(2) hybrid families, but we now locate the causative deleterious mutations, using a quantitative trait locus (QTL) interval-mapping model, and we characterize their mode of gene action. We find 14-15 viability QTL (vQTL) in the two families. Genotypic frequencies at vQTL generally suggest selection against recessive or partially recessive alleles, supporting the dominance theory of inbreeding depression. No epistasis was detected among vQTL, so unlinked vQTL presumably have independent effects on survival. For the first time, we track segregation ratios of vQTL-linked markers through the life cycle, to determine their stage-specific expression. Almost all vQTL are absent in the earliest life stages examined, confirming zygotic viability selection; vQTL are predominantly expressed before the juvenile stage (90%), mostly at metamorphosis (50%). We estimate that, altogether, selection on vQTL caused 96% mortality in these families, accounting for nearly all of the actual mortality. Thus, genetic load causes substantial mortality in inbred Pacific oysters, particularly during metamorphosis, a critical developmental transition warranting further investigation.
近亲繁殖衰退和遗传负荷已经被广泛观察到,但它们在生命周期中的遗传基础和对适应性的影响仍知之甚少,特别是对于具有高繁殖力和高早期死亡率(III 型存活)的海洋动物。先前从 F2 家系中合子、标记分离比例的大规模扭曲推断出太平洋牡蛎(Crassostrea gigas)具有大量隐性突变的负荷。然而,影响生存力的突变数量、基因组位置和特定发育阶段的起始尚未得到彻底研究。在这里,我们再次报告了两个 F2 杂交家系中微卫星标记分离比例的大规模扭曲,但现在我们使用数量性状位点(QTL)区间映射模型定位了导致这种情况的有害突变,并对其作用模式进行了表征。我们在两个家系中发现了 14-15 个生存力 QTL(vQTL)。vQTL 的基因型频率通常表明对隐性或部分隐性等位基因的选择,支持近亲繁殖衰退的显性理论。vQTL 之间没有检测到上位性,因此不连锁的 vQTL 可能对存活有独立的影响。这是我们第一次通过生命周期跟踪 vQTL 连锁标记的分离比例,以确定它们的特定发育阶段的表达。在研究的最早发育阶段中,几乎所有的 vQTL 都不存在,证实了合子生存力选择;vQTL 主要在幼体阶段之前(90%)表达,主要在变态期(50%)表达。我们估计,vQTL 选择共导致这些家系中 96%的死亡率,几乎占实际死亡率的全部。因此,遗传负荷在近交太平洋牡蛎中导致了大量的死亡率,特别是在变态期,这是一个关键的发育过渡,值得进一步研究。