Geballe Laboratory for Advanced Materials, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA.
Science. 2011 Sep 23;333(6050):1720-3. doi: 10.1126/science.1207858.
Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme light concentration and the ability to perform simultaneous electrical and optical functions. These properties also make plasmonics an ideal candidate for dynamically controlling nonlinear optical interactions at the nanoscale. We demonstrate electrically tunable harmonic generation of light from a plasmonic nanocavity filled with a nonlinear medium. The metals that define the cavity also serve as electrodes that can generate high direct current electric fields across the nonlinear material. A fundamental wave at 1.56 micrometers was frequency doubled and modulated in intensity by applying a moderate external voltage to the electrodes, yielding a voltage-dependent nonlinear generation with a normalized magnitude of ~7% per volt.
等离子体激元学提供了一种在芯片上开发超紧凑光学器件的途径,其利用了极端的光集中和同时进行电和光功能的能力。这些特性也使等离子体成为在纳米尺度上动态控制非线性光学相互作用的理想选择。我们展示了通过填充有非线性介质的等离子体纳米腔来实现对光的电可调谐谐波产生。定义腔的金属也可用作电极,可在非线性材料上产生横跨的高直流电场。在施加中等外部电压到电极时,1.56 微米的基波被倍频并调制强度,从而产生归一化幅度约为每伏特 7%的电压相关非线性产生。