Suppr超能文献

二价抗衡离子将膜结合的碳水化合物束缚在一起,以促进听觉毛束的凝聚。

Divalent counterions tether membrane-bound carbohydrates to promote the cohesion of auditory hair bundles.

机构信息

Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, USA.

出版信息

Biophys J. 2011 Sep 21;101(6):1316-25. doi: 10.1016/j.bpj.2011.07.053. Epub 2011 Sep 20.

Abstract

The cell membranes in the hair bundle of an auditory hair cell confront a difficult task as the bundle oscillates in response to sound: for efficient mechanotransduction, all the component stereocilia of the hair bundle must move essentially in unison, shearing at their tips yet maintaining contact without membrane fusion. One mechanism by which this cohesion might occur is counterion-mediated attachment between glycan components of apposed stereociliary membranes. Using capillary electrophoresis, we showed that the stereociliary glycocalyx acts as a negatively charged polymer brush. We found by force-sensing photomicrometry that the stereocilia formed elastic connections with one another to various degrees depending on the surrounding ionic environment and the presence of N-linked sugars. Mg(2+) was a more potent mediator of attachment than was Ca(2+). The forces between stereocilia produced chaotic stick-slip behavior. These results indicate that counterion-mediated interactions in the glycocalyx contribute to the stereociliary coherence that is essential for hearing.

摘要

毛细胞的毛束中的细胞膜面临着一项艰巨的任务,因为毛束会随着声音的振动而摆动:为了实现高效的机械转导,毛束的所有组成纤毛都必须基本同步移动,在尖端剪切但保持接触而不发生膜融合。一种可能发生这种内聚力的机制是对合的纤毛膜糖基成分之间的抗衡离子介导的附着。我们使用毛细管电泳表明,纤毛糖萼充当带负电荷的聚合物刷。通过力感应光微测量,我们发现纤毛彼此之间形成弹性连接,这取决于周围的离子环境和 N 连接糖的存在。Mg(2+) 是比 Ca(2+) 更强的附着介质。纤毛之间产生的力表现出混沌的粘滑行为。这些结果表明,糖萼中的抗衡离子介导的相互作用有助于维持听力所必需的纤毛一致性。

相似文献

1
Divalent counterions tether membrane-bound carbohydrates to promote the cohesion of auditory hair bundles.
Biophys J. 2011 Sep 21;101(6):1316-25. doi: 10.1016/j.bpj.2011.07.053. Epub 2011 Sep 20.
2
Stereocilia fusion pathology in the cochlear outer hair cells at the nanoscale level.
J Physiol. 2024 Aug;602(16):3995-4025. doi: 10.1113/JP286318. Epub 2024 Jul 22.
3
Stereociliary glycocalyx and interconnections in the guinea pig vestibular organs.
Acta Otolaryngol. 1988 Jul-Aug;106(1-2):130-9. doi: 10.3109/00016488809107380.
4
Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale.
Nature. 2011 May 22;474(7351):376-9. doi: 10.1038/nature10073.
5
6
Stereocilia membrane deformation: implications for the gating spring and mechanotransduction channel.
Biophys J. 2012 Jan 18;102(2):201-10. doi: 10.1016/j.bpj.2011.12.022.
7
Stereociliary bundle morphology in organotypic cultures of the mouse cochlea.
Hear Res. 1989 Mar;38(1-2):95-109. doi: 10.1016/0378-5955(89)90131-7.
8
Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner.
J Neurosci. 2017 Mar 29;37(13):3447-3464. doi: 10.1523/JNEUROSCI.2711-16.2017. Epub 2017 Feb 16.
9
The local forces acting on the mechanotransduction channel in hair cell stereocilia.
Biophys J. 2014 Jun 3;106(11):2519-28. doi: 10.1016/j.bpj.2014.03.034.
10
Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia.
J Neurosci. 2009 Dec 2;29(48):15277-85. doi: 10.1523/JNEUROSCI.3231-09.2009.

引用本文的文献

1
3D morphology of an outer-hair-cell hair bundle increases its displacement and dynamic range.
Biophys J. 2024 Oct 1;123(19):3433-3451. doi: 10.1016/j.bpj.2024.08.009. Epub 2024 Aug 19.
2
Coupling between the Stereocilia of Rat Sensory Inner-Hair-Cell Hair Bundles Is Weak, Shaping Their Sensitivity to Stimulation.
J Neurosci. 2023 Mar 22;43(12):2053-2074. doi: 10.1523/JNEUROSCI.1588-22.2023. Epub 2023 Feb 6.
3
PKHD1L1 is a coat protein of hair-cell stereocilia and is required for normal hearing.
Nat Commun. 2019 Aug 23;10(1):3801. doi: 10.1038/s41467-019-11712-w.
4
Molecular Composition of Vestibular Hair Bundles.
Cold Spring Harb Perspect Med. 2019 Jan 2;9(1):a033209. doi: 10.1101/cshperspect.a033209.
5
BODIPY-Conjugated Xyloside Primes Fluorescent Glycosaminoglycans in the Inner Ear of Opsanus tau.
J Assoc Res Otolaryngol. 2016 Dec;17(6):525-540. doi: 10.1007/s10162-016-0585-5. Epub 2016 Sep 12.

本文引用的文献

1
Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale.
Nature. 2011 May 22;474(7351):376-9. doi: 10.1038/nature10073.
2
The auditory brainstem response in two lizard species.
J Acoust Soc Am. 2010 Aug;128(2):787-94. doi: 10.1121/1.3458813.
3
Sliding adhesion confers coherent motion to hair cell stereocilia and parallel gating to transduction channels.
J Neurosci. 2010 Jul 7;30(27):9051-63. doi: 10.1523/JNEUROSCI.4864-09.2010.
5
Lubrication at physiological pressures by polyzwitterionic brushes.
Science. 2009 Mar 27;323(5922):1698-701. doi: 10.1126/science.1169399.
7
Selectin catch-slip kinetics encode shear threshold adhesive behavior of rolling leukocytes.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20716-21. doi: 10.1073/pnas.0808213105. Epub 2008 Dec 18.
8
Making an effort to listen: mechanical amplification in the ear.
Neuron. 2008 Aug 28;59(4):530-45. doi: 10.1016/j.neuron.2008.07.012.
10
Development of the hair bundle and mechanotransduction.
Int J Dev Biol. 2007;51(6-7):597-608. doi: 10.1387/ijdb.072392gn.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验