Holman Holly A, Tran Vy M, Kalita Mausam, Nguyen Lynn N, Arungundram Sailaja, Kuberan Balagurunathan, Rabbitt Richard D
Department of Bioengineering, University of Utah, 36 South Wasatch Dr., Sorenson Molecular Biotechnology Building, Salt Lake City, UT, 84112, USA.
Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, 1972 Skaggs Hall, Salt Lake City, UT, 84112, USA.
J Assoc Res Otolaryngol. 2016 Dec;17(6):525-540. doi: 10.1007/s10162-016-0585-5. Epub 2016 Sep 12.
We report on a new xyloside conjugated to BODIPY, BX and its utility to prime fluorescent glycosaminoglycans (BX-GAGs) within the inner ear in vivo. When BX is administered directly into the endolymphatic space of the oyster toadfish (Opsanus tau) inner ear, fluorescent BX-GAGs are primed and become visible in the sensory epithelia of the semicircular canals, utricle, and saccule. Confocal and 2-photon microscopy of vestibular organs fixed 4 h following BX treatment, reveal BX-GAGs constituting glycocalyces that envelop hair cell kinocilium, nerve fibers, and capillaries. In the presence of GAG-specific enzymes, the BX-GAG signals are diminished, suggesting that chondroitin sulfates are the primary GAGs primed by BX. Results are consistent with similar click-xylosides in CHO cell lines, where the xyloside enters the Golgi and preferentially initiates chondroitin sulfate B production. Introduction of BX produces a temporary block of hair cell mechanoelectrical transduction (MET) currents in the crista, reduction in background discharge rate of afferent neurons, and a reduction in sensitivity to physiological stimulation. A six-degree-of-freedom pharmacokinetic mathematical model has been applied to interpret the time course and spatial distribution of BX and BX-GAGs. Results demonstrate a new optical approach to study GAG biology in the inner ear, for tracking synthesis and localization in real time.
我们报道了一种与BODIPY共轭的新型木糖苷BX及其在体内引发内耳荧光糖胺聚糖(BX-GAGs)的效用。当将BX直接注入牡蛎蟾鱼(Opsanus tau)内耳的内淋巴间隙时,荧光BX-GAGs被引发,并在半规管、椭圆囊和球囊的感觉上皮中可见。在BX处理后4小时固定的前庭器官的共聚焦和双光子显微镜检查显示,BX-GAGs构成了包裹毛细胞动纤毛、神经纤维和毛细血管的糖萼。在存在GAG特异性酶的情况下,BX-GAG信号减弱,表明硫酸软骨素是由BX引发的主要GAG。结果与CHO细胞系中类似的点击木糖苷一致,其中木糖苷进入高尔基体并优先启动硫酸软骨素B的产生。引入BX会在嵴中产生毛细胞机械电转导(MET)电流的暂时阻断,传入神经元背景放电率降低,以及对生理刺激的敏感性降低。已应用六自由度药代动力学数学模型来解释BX和BX-GAGs的时间进程和空间分布。结果证明了一种研究内耳GAG生物学的新光学方法,用于实时追踪合成和定位。