Suppr超能文献

作用于毛细胞静纤毛机械转导通道的局部力。

The local forces acting on the mechanotransduction channel in hair cell stereocilia.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.

Department of Microbiology, Columbia University, New York, New York.

出版信息

Biophys J. 2014 Jun 3;106(11):2519-28. doi: 10.1016/j.bpj.2014.03.034.

Abstract

In hair cells, mechanotransduction channels are located in the membrane of stereocilia tips, where the base of the tip link is attached. The tip-link force determines the system of other forces in the immediate channel environment, which change the channel open probability. This system of forces includes components that are out of plane and in plane relative to the membrane; the magnitude and direction of these components depend on the channel environment and arrangement. Using a computational model, we obtained the major forces involved as functions of the force applied via the tip link at the center of the membrane. We simulated factors related to channels and the membrane, including finite-sized channels located centrally or acentrally, stiffness of the hypothesized channel-cytoskeleton tether, and bending modulus of the membrane. Membrane forces are perpendicular to the directions of the principal curvatures of the deformed membrane. Our approach allows for a fine vectorial picture of the local forces gating the channel; membrane forces change with the membrane curvature and are themselves sufficient to affect the open probability of the channel.

摘要

在毛细胞中,机械转导通道位于静纤毛尖端的膜上,而尖端连接的底部附着在该处。尖端连接力决定了紧邻通道环境中的其他力系统,这些力系统会改变通道的开放概率。这个力系统包括相对于膜平面内外的组成部分;这些组成部分的大小和方向取决于通道环境和排列。我们使用计算模型,将主要涉及的力作为通过膜中心的尖端连接施加的力的函数来获得。我们模拟了与通道和膜相关的因素,包括位于中心或偏心位置的有限大小的通道、假设的通道-细胞骨架系绳的刚度以及膜的弯曲模量。膜力垂直于变形膜的主曲率方向。我们的方法允许对局部力进行精细的向量描述,从而控制通道;膜力随膜曲率而变化,并且足以影响通道的开放概率。

相似文献

1
The local forces acting on the mechanotransduction channel in hair cell stereocilia.
Biophys J. 2014 Jun 3;106(11):2519-28. doi: 10.1016/j.bpj.2014.03.034.
2
Stereocilia membrane deformation: implications for the gating spring and mechanotransduction channel.
Biophys J. 2012 Jan 18;102(2):201-10. doi: 10.1016/j.bpj.2011.12.022.
4
Stereocilia morphogenesis and maintenance through regulation of actin stability.
Semin Cell Dev Biol. 2017 May;65:88-95. doi: 10.1016/j.semcdb.2016.08.017. Epub 2016 Aug 23.
6
Lipid bilayer mediates ion-channel cooperativity in a model of hair-cell mechanotransduction.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E11010-E11019. doi: 10.1073/pnas.1713135114. Epub 2017 Dec 7.
9
TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells.
Cell. 2012 Dec 7;151(6):1283-95. doi: 10.1016/j.cell.2012.10.041.
10
Phase separation-mediated condensation of Whirlin-Myo15-Eps8 stereocilia tip complex.
Cell Rep. 2021 Feb 23;34(8):108770. doi: 10.1016/j.celrep.2021.108770.

引用本文的文献

1
Mechanosensitive Ion Channels: The Unending Riddle of Mechanotransduction.
Bioelectricity. 2025 Mar 18;7(1):58-70. doi: 10.1089/bioe.2024.0028. eCollection 2025 Mar.
2
A Review of Continuum Mechanics for Mechanical Deformation of Lipid Membranes.
Membranes (Basel). 2023 May 3;13(5):493. doi: 10.3390/membranes13050493.
3
A minimal physics-based model for musical perception.
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2216146120. doi: 10.1073/pnas.2216146120. Epub 2023 Jan 24.
5
Dimensions of a Living Cochlear Hair Bundle.
Front Cell Dev Biol. 2021 Nov 25;9:742529. doi: 10.3389/fcell.2021.742529. eCollection 2021.
6
Rat Auditory Inner Hair Cell Mechanotransduction and Stereociliary Membrane Diffusivity Are Similarly Modulated by Calcium.
iScience. 2020 Nov 5;23(12):101773. doi: 10.1016/j.isci.2020.101773. eCollection 2020 Dec 18.
7
A cryo-tomography-based volumetric model of the actin core of mouse vestibular hair cell stereocilia lacking plastin 1.
J Struct Biol. 2020 Apr 1;210(1):107461. doi: 10.1016/j.jsb.2020.107461. Epub 2020 Jan 18.
8
A Bundle of Mechanisms: Inner-Ear Hair-Cell Mechanotransduction.
Trends Neurosci. 2019 Mar;42(3):221-236. doi: 10.1016/j.tins.2018.12.006. Epub 2019 Jan 17.
9
Interplay of cell death signaling pathways mediated by alternating magnetic field gradient.
Cell Death Discov. 2018 Apr 27;4:49. doi: 10.1038/s41420-018-0052-7. eCollection 2018.
10
The Competition between the Noise and Shear Motion Sensitivity of Cochlear Inner Hair Cell Stereocilia.
Biophys J. 2018 Jan 23;114(2):474-483. doi: 10.1016/j.bpj.2017.11.3746.

本文引用的文献

1
Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3614-9. doi: 10.1073/pnas.1320768111. Epub 2014 Feb 18.
2
Internal forces, tension and energy density in tethered cellular membranes.
J Biomech. 2012 Apr 30;45(7):1328-31. doi: 10.1016/j.jbiomech.2012.01.041. Epub 2012 Feb 16.
3
Stereocilia membrane deformation: implications for the gating spring and mechanotransduction channel.
Biophys J. 2012 Jan 18;102(2):201-10. doi: 10.1016/j.bpj.2011.12.022.
5
Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant.
Neuron. 2011 Jun 23;70(6):1143-54. doi: 10.1016/j.neuron.2011.04.024.
6
Mechanosensitive channels in microbes.
Annu Rev Microbiol. 2010;64:313-29. doi: 10.1146/annurev.micro.112408.134106.
7
Structural determinants of cadherin-23 function in hearing and deafness.
Neuron. 2010 Apr 15;66(1):85-100. doi: 10.1016/j.neuron.2010.03.028.
8
Computational analysis of the tether-pulling experiment to probe plasma membrane-cytoskeleton interaction in cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041905. doi: 10.1103/PhysRevE.80.041905. Epub 2009 Oct 6.
9
Mechanotransduction by hair cells: models, molecules, and mechanisms.
Cell. 2009 Oct 2;139(1):33-44. doi: 10.1016/j.cell.2009.09.010.
10
Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging.
Nat Neurosci. 2009 May;12(5):553-8. doi: 10.1038/nn.2295. Epub 2009 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验