Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India.
Biophys J. 2011 Sep 21;101(6):1393-402. doi: 10.1016/j.bpj.2011.08.007. Epub 2011 Sep 20.
Crossover motifs are integral components for designing DNA-based nanostructures and nanomechanical devices due to their enhanced rigidity compared to the normal B-DNA. Although the structural rigidity of the double helix B-DNA has been investigated extensively using both experimental and theoretical tools, to date there is no quantitative information about structural rigidity and the mechanical strength of parallel crossover DNA motifs. We have used fully atomistic molecular dynamics simulations in explicit solvent to get the force-extension curve of parallel DNA nanostructures to characterize their mechanical rigidity. In the presence of monovalent Na(+) ions, we find that the stretch modulus (γ(1)) of the paranemic crossover and its topoisomer JX DNA structure is significantly higher (~30%) compared to normal B-DNA of the same sequence and length. However, this is in contrast to the original expectation that these motifs are almost twice as rigid compared to the double-stranded B-DNA. When the DNA motif is surrounded by a solvent with Mg(2+) counterions, we find an enhanced rigidity compared to Na(+) environment due to the electrostatic screening effects arising from the divalent nature of Mg(2+) ions. To our knowledge, this is the first direct determination of the mechanical strength of these crossover motifs, which can be useful for the design of suitable DNA for DNA-based nanostructures and nanomechanical devices with improved structural rigidity.
由于其与正常 B-DNA 相比具有更高的刚性,交叉基序是设计基于 DNA 的纳米结构和纳米机械装置的基本组成部分。尽管已经使用实验和理论工具广泛研究了双螺旋 B-DNA 的结构刚性,但迄今为止,关于平行交叉 DNA 基序的结构刚性和机械强度还没有定量信息。我们使用显式溶剂中的全原子分子动力学模拟获得了平行 DNA 纳米结构的力-伸长曲线,以表征其机械刚性。在单价 Na(+)离子存在下,我们发现并矢交叉和其拓扑异构 JX DNA 结构的拉伸模量 (γ(1)) 比相同序列和长度的正常 B-DNA 显著高 (~30%)。然而,这与最初的预期相反,即这些基序的刚性几乎是双链 B-DNA 的两倍。当 DNA 基序被含有二价 Mg(2+)反离子的溶剂包围时,我们发现由于 Mg(2+)离子的二价性质引起的静电屏蔽效应,与 Na(+)环境相比,刚性得到增强。据我们所知,这是首次直接确定这些交叉基序的机械强度,这对于设计具有改进结构刚性的基于 DNA 的纳米结构和纳米机械装置的合适 DNA 非常有用。