The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States.
Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, United States.
J Am Chem Soc. 2020 Apr 8;142(14):6814-6821. doi: 10.1021/jacs.0c02211. Epub 2020 Mar 25.
Nanometer-sized features and molecular recognition properties make DNA a useful material for nanoscale construction, but degradation in biological fluids poses a considerable roadblock to biomedical applications of DNA nanotechnology. Here, we report the remarkable biostability of a multistranded motif called paranemic crossover (PX) DNA. Compared to double stranded DNA, PX DNA has dramatically enhanced (sometimes >1000 fold) resistance to degradation by four different nucleases, bovine and human serum, and human urine. We trace the cause of PX's biostability to DNA crossovers, showing a continuum of protection that scales with the number of crossovers. These results suggest that enhanced biostability can be engineered into DNA nanostructures by adopting PX-based architectures or by strategic crossover placement.
纳米级特征和分子识别特性使 DNA 成为纳米级构建的有用材料,但在生物流体中的降解对 DNA 纳米技术的生物医学应用构成了相当大的障碍。在这里,我们报告了一种称为平行交叉 (PX) DNA 的多股基序的惊人的生物稳定性。与双链 DNA 相比,PX DNA 对四种不同的核酸酶、牛血清和人血清以及人尿的降解具有显著增强的(有时 >1000 倍)抗性。我们将 PX 的生物稳定性的原因追溯到 DNA 交叉,显示出与交叉数量成比例的保护的连续统。这些结果表明,通过采用基于 PX 的结构或通过交叉位置的策略性放置,可以将增强的生物稳定性设计到 DNA 纳米结构中。