Department of Mathematical and Statistical Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada.
Biophys J. 2011 Sep 21;101(6):1412-22. doi: 10.1016/j.bpj.2011.07.030. Epub 2011 Sep 20.
Par proteins establish discrete intracellular spatial domains to polarize many different cell types. In the single-cell embryo of the nematode worm Caenorhabditis elegans, the segregation of Par proteins is crucial for proper division and cell fate specification. Actomyosin-based cortical flows drive the initial formation of anterior and posterior Par domains, but cortical actin is not required for the maintenance of these domains. Here we develop a model of interactions between the Par proteins that includes both mutual inhibition and PAR-3 oligomerization. We show that this model gives rise to a bistable switch mechanism, allowing the Par proteins to occupy distinct anterior and posterior domains seen in the early C. elegans embryo, independent of dynamics or asymmetries in the actin cortex. The model predicts a sharp loss of cortical Par protein asymmetries during gradual depletion of the Par protein PAR-6, and we confirm this prediction experimentally. Together, these results suggest both mutual inhibition and PAR-3 oligomerization are sufficient to maintain distinct Par protein domains in the early C. elegans embryo.
Par 蛋白在细胞内建立离散的空间域,使许多不同的细胞类型具有极性。在秀丽隐杆线虫的单细胞胚胎中,Par 蛋白的分离对于正确的分裂和细胞命运特化至关重要。肌动球蛋白依赖性皮质流驱动前、后 Par 域的初始形成,但皮质肌动蛋白对于这些域的维持不是必需的。在这里,我们开发了一个包含相互抑制和 PAR-3 寡聚化的 Par 蛋白相互作用模型。我们表明,该模型产生了一个双稳态开关机制,使 Par 蛋白能够占据早期秀丽隐杆线虫胚胎中所见的不同的前、后域,而不依赖于肌动蛋白皮质的动力学或不对称性。该模型预测,随着 Par 蛋白 PAR-6 的逐渐耗尽,皮质 Par 蛋白的不对称性会急剧丧失,我们通过实验证实了这一预测。总之,这些结果表明,相互抑制和 PAR-3 寡聚化足以在早期秀丽隐杆线虫胚胎中维持不同的 Par 蛋白域。