Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
Biophys J. 2011 Sep 21;101(6):1467-73. doi: 10.1016/j.bpj.2011.08.021. Epub 2011 Sep 20.
Zinc (Zn) is one of the most abundant metals and is essential for life. Through ligand interactions, often with thiolate from cysteine residues in proteins, Zn can play important structural roles in organizing protein structure and augmenting protein folding and stability. However, it is difficult to separate the contributions of Zn-ligand interactions from those originating from intrinsic protein folding in experimental studies of Zn-containing metalloproteins, which makes the study of Zn-ligand interactions in proteins challenging. Here, we used single-molecule force spectroscopy to directly measure the mechanical rupture force of the Zn-thiolate bond in Zn-rubredoxin. Our results show that considerable force is needed to rupture Zn-thiolate bonds (~170 pN, which is significantly higher than the force necessary to rupture the coordination bond between Zn and histidines). To our knowledge, our study not only provides new information about Zn-thiolate bonds in rubredoxin, it also opens a new avenue for studying metal-ligand bonds in proteins using single-molecule force spectroscopy.
锌(Zn)是含量最丰富的金属之一,是生命所必需的。通过配体相互作用,通常与蛋白质中半胱氨酸残基的硫醇盐相互作用,Zn 可以在组织蛋白质结构和增强蛋白质折叠和稳定性方面发挥重要的结构作用。然而,在含有 Zn 的金属蛋白酶的实验研究中,很难将 Zn-配体相互作用的贡献与源自固有蛋白质折叠的贡献区分开来,这使得研究蛋白质中的 Zn-配体相互作用具有挑战性。在这里,我们使用单分子力谱技术直接测量 Zn-豆血红蛋白中硫醇盐键的机械断裂力。我们的结果表明,Zn-硫醇盐键的断裂需要相当大的力(~170 pN,明显高于 Zn 与组氨酸之间的配位键断裂所需的力)。据我们所知,我们的研究不仅为豆血红蛋白中的 Zn-硫醇盐键提供了新的信息,还为使用单分子力谱技术研究蛋白质中的金属-配体键开辟了新的途径。