Suppr超能文献

通过单分子原子力显微镜直接测量 rubredoxin 中锌-巯基键的机械稳定性。

Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy.

机构信息

Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Biophys J. 2011 Sep 21;101(6):1467-73. doi: 10.1016/j.bpj.2011.08.021. Epub 2011 Sep 20.

Abstract

Zinc (Zn) is one of the most abundant metals and is essential for life. Through ligand interactions, often with thiolate from cysteine residues in proteins, Zn can play important structural roles in organizing protein structure and augmenting protein folding and stability. However, it is difficult to separate the contributions of Zn-ligand interactions from those originating from intrinsic protein folding in experimental studies of Zn-containing metalloproteins, which makes the study of Zn-ligand interactions in proteins challenging. Here, we used single-molecule force spectroscopy to directly measure the mechanical rupture force of the Zn-thiolate bond in Zn-rubredoxin. Our results show that considerable force is needed to rupture Zn-thiolate bonds (~170 pN, which is significantly higher than the force necessary to rupture the coordination bond between Zn and histidines). To our knowledge, our study not only provides new information about Zn-thiolate bonds in rubredoxin, it also opens a new avenue for studying metal-ligand bonds in proteins using single-molecule force spectroscopy.

摘要

锌(Zn)是含量最丰富的金属之一,是生命所必需的。通过配体相互作用,通常与蛋白质中半胱氨酸残基的硫醇盐相互作用,Zn 可以在组织蛋白质结构和增强蛋白质折叠和稳定性方面发挥重要的结构作用。然而,在含有 Zn 的金属蛋白酶的实验研究中,很难将 Zn-配体相互作用的贡献与源自固有蛋白质折叠的贡献区分开来,这使得研究蛋白质中的 Zn-配体相互作用具有挑战性。在这里,我们使用单分子力谱技术直接测量 Zn-豆血红蛋白中硫醇盐键的机械断裂力。我们的结果表明,Zn-硫醇盐键的断裂需要相当大的力(~170 pN,明显高于 Zn 与组氨酸之间的配位键断裂所需的力)。据我们所知,我们的研究不仅为豆血红蛋白中的 Zn-硫醇盐键提供了新的信息,还为使用单分子力谱技术研究蛋白质中的金属-配体键开辟了新的途径。

相似文献

1
Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy.
Biophys J. 2011 Sep 21;101(6):1467-73. doi: 10.1016/j.bpj.2011.08.021. Epub 2011 Sep 20.
2
Direct Measurements of the Cobalt-Thiolate Bonds Strength in Rubredoxin by Single-Molecule Force Spectroscopy.
Chembiochem. 2022 Jun 20;23(12):e202200165. doi: 10.1002/cbic.202200165. Epub 2022 May 11.
3
Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin.
J Am Chem Soc. 2013 Nov 27;135(47):17783-92. doi: 10.1021/ja406695g. Epub 2013 Nov 14.
4
Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin.
J Am Chem Soc. 2012 Mar 7;134(9):4124-31. doi: 10.1021/ja2078812. Epub 2012 Feb 24.
5
Single molecule force spectroscopy reveals that iron is released from the active site of rubredoxin by a stochastic mechanism.
J Am Chem Soc. 2013 May 29;135(21):7992-8000. doi: 10.1021/ja402150q. Epub 2013 May 14.
7
Reversible unfolding-refolding of rubredoxin: a single-molecule force spectroscopy study.
Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14060-3. doi: 10.1002/anie.201408105. Epub 2014 Oct 14.
10
Thermostability in rubredoxin and its relationship to mechanical rigidity.
Phys Biol. 2009 Dec 11;7:16002. doi: 10.1088/1478-3975/7/1/016002.

引用本文的文献

1
Azobenzene as a photoswitchable mechanophore.
Nat Chem. 2024 Mar;16(3):446-455. doi: 10.1038/s41557-023-01389-6. Epub 2023 Dec 5.
2
Protein folding mechanism revealed by single-molecule force spectroscopy experiments.
Biophys Rep. 2021 Oct 31;7(5):399-412. doi: 10.52601/bpr.2021.210024.
3
An unexpected all-metal aromatic tetranuclear silver cluster in human copper chaperone Atox1.
Chem Sci. 2022 May 30;13(24):7269-7275. doi: 10.1039/d1sc07122j. eCollection 2022 Jun 22.
4
Targeting a Dark Excited State of HIV-1 Nucleocapsid by Antiretroviral Thioesters Revealed by NMR Spectroscopy.
Angew Chem Int Ed Engl. 2018 Mar 1;57(10):2687-2691. doi: 10.1002/anie.201713172. Epub 2018 Feb 2.
5
Multidomain proteins under force.
Nanotechnology. 2017 Apr 28;28(17):174003. doi: 10.1088/1361-6528/aa655e. Epub 2017 Mar 8.
7
Single-molecule dynamics and mechanisms of metalloregulators and metallochaperones.
Biochemistry. 2013 Oct 15;52(41):7170-83. doi: 10.1021/bi400597v. Epub 2013 Oct 1.

本文引用的文献

1
Facile method of constructing polyproteins for single-molecule force spectroscopy studies.
Langmuir. 2011 May 17;27(10):5713-8. doi: 10.1021/la200915d. Epub 2011 Apr 12.
2
Highly covalent ferric-thiolate bonds exhibit surprisingly low mechanical stability.
J Am Chem Soc. 2011 May 4;133(17):6791-8. doi: 10.1021/ja200715h. Epub 2011 Apr 8.
5
Thermodynamic stability versus kinetic lability of ZnS4 core.
Chem Asian J. 2010 Jun 1;5(6):1445-54. doi: 10.1002/asia.200900624.
6
Mechanically-induced chemical changes in polymeric materials.
Chem Rev. 2009 Nov;109(11):5755-98. doi: 10.1021/cr9001353.
7
Coordination dynamics of zinc in proteins.
Chem Rev. 2009 Oct;109(10):4682-707. doi: 10.1021/cr800556u.
8
Role of protons in the thermodynamic contribution of a Zn(II)-Cys4 site toward metalloprotein stability.
Biochemistry. 2007 Mar 27;46(12):3745-58. doi: 10.1021/bi062253w. Epub 2007 Feb 28.
9
Polyprotein of GB1 is an ideal artificial elastomeric protein.
Nat Mater. 2007 Feb;6(2):109-14. doi: 10.1038/nmat1825. Epub 2007 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验