Department of Biological Sciences, Columbia University, New York, NY, United States of America.
Nanotechnology. 2017 Apr 28;28(17):174003. doi: 10.1088/1361-6528/aa655e. Epub 2017 Mar 8.
Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.
单分子力谱技术的进步,如原子力显微镜和磁镊,使得研究力下结构域折叠如何发挥生理作用成为可能。我们将这些技术与蛋白工程和 HaloTag 共价连接相结合,研究了四个模型蛋白之间的异同:I10 和 I91——来自肌肉蛋白titin 的两个免疫球蛋白样结构域,以及两个 α+β 折叠蛋白——泛素和蛋白 L。这些蛋白表现出不同的力学响应,并且在力的作用下具有独特的延伸。值得注意的是,当归一化到它们的轮廓长度时,作为力函数的展开和重折叠步骤的大小可以简化为单个主曲线。该曲线可以使用聚合物弹性的标准模型来描述,解释了所测量步骤的熵性质。我们进一步用一个简单的能量景观模型验证了我们的测量结果,该模型将蛋白折叠与聚合物物理相结合,并考虑了串联结构域在力下的复杂性质。该模型可以成为一种有用的工具,有助于破译力作用下多结构域蛋白的复杂性。