Suppr超能文献

力作用下的多结构域蛋白

Multidomain proteins under force.

机构信息

Department of Biological Sciences, Columbia University, New York, NY, United States of America.

出版信息

Nanotechnology. 2017 Apr 28;28(17):174003. doi: 10.1088/1361-6528/aa655e. Epub 2017 Mar 8.

Abstract

Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

摘要

单分子力谱技术的进步,如原子力显微镜和磁镊,使得研究力下结构域折叠如何发挥生理作用成为可能。我们将这些技术与蛋白工程和 HaloTag 共价连接相结合,研究了四个模型蛋白之间的异同:I10 和 I91——来自肌肉蛋白titin 的两个免疫球蛋白样结构域,以及两个 α+β 折叠蛋白——泛素和蛋白 L。这些蛋白表现出不同的力学响应,并且在力的作用下具有独特的延伸。值得注意的是,当归一化到它们的轮廓长度时,作为力函数的展开和重折叠步骤的大小可以简化为单个主曲线。该曲线可以使用聚合物弹性的标准模型来描述,解释了所测量步骤的熵性质。我们进一步用一个简单的能量景观模型验证了我们的测量结果,该模型将蛋白折叠与聚合物物理相结合,并考虑了串联结构域在力下的复杂性质。该模型可以成为一种有用的工具,有助于破译力作用下多结构域蛋白的复杂性。

相似文献

1
Multidomain proteins under force.
Nanotechnology. 2017 Apr 28;28(17):174003. doi: 10.1088/1361-6528/aa655e. Epub 2017 Mar 8.
2
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Science. 1997 May 16;276(5315):1109-12. doi: 10.1126/science.276.5315.1109.
3
The Work of Titin Protein Folding as a Major Driver in Muscle Contraction.
Annu Rev Physiol. 2018 Feb 10;80:327-351. doi: 10.1146/annurev-physiol-021317-121254.
4
Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy.
Phys Rev Lett. 2008 Dec 12;101(24):248301. doi: 10.1103/PhysRevLett.101.248301. Epub 2008 Dec 8.
5
Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
J Am Chem Soc. 2015 Mar 18;137(10):3540-6. doi: 10.1021/ja5119368. Epub 2015 Mar 9.
6
Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.
Prog Biophys Mol Biol. 2000;74(1-2):63-91. doi: 10.1016/s0079-6107(00)00017-1.
8
High-Speed Force Spectroscopy for Single Protein Unfolding.
Methods Mol Biol. 2018;1814:243-264. doi: 10.1007/978-1-4939-8591-3_15.
10
Force generation by titin folding.
Protein Sci. 2017 Jul;26(7):1380-1390. doi: 10.1002/pro.3117. Epub 2017 Mar 1.

引用本文的文献

2
The molecular mechanisms underlying mussel adhesion.
Nanoscale Adv. 2019 Oct 10;1(11):4246-4257. doi: 10.1039/c9na00582j. eCollection 2019 Nov 5.
3
Mechanical regulation of talin through binding and history-dependent unfolding.
Sci Adv. 2022 Jul 15;8(28):eabl7719. doi: 10.1126/sciadv.abl7719.
4
Optimal Sacrificial Domains in Mechanical Polyproteins: Adhesins Are Tuned for Work Dissipation.
JACS Au. 2022 May 18;2(6):1417-1427. doi: 10.1021/jacsau.2c00121. eCollection 2022 Jun 27.
5
Quantitative Elasticity of Flexible Polymer Chains Using Interferometer-Based AFM.
Nanomaterials (Basel). 2022 Feb 3;12(3):526. doi: 10.3390/nano12030526.
6
Protein Unfolding: Denaturant vs. Force.
Biomedicines. 2021 Oct 5;9(10):1395. doi: 10.3390/biomedicines9101395.
7
Protein nanomechanics in biological context.
Biophys Rev. 2021 Aug 7;13(4):435-454. doi: 10.1007/s12551-021-00822-9. eCollection 2021 Aug.
8
The extracellular matrix-myosin pathway in mechanotransduction: from molecule to tissue.
Emerg Top Life Sci. 2018 Dec 21;2(5):727-737. doi: 10.1042/ETLS20180043.
9
Cation-induced shape programming and morphing in protein-based hydrogels.
Sci Adv. 2020 Apr 29;6(18):eaba6112. doi: 10.1126/sciadv.aba6112. eCollection 2020 May.
10
Chemical unfolding of protein domains induces shape change in programmed protein hydrogels.
Nat Commun. 2019 Nov 29;10(1):5439. doi: 10.1038/s41467-019-13312-0.

本文引用的文献

2
A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics.
J Am Chem Soc. 2016 Aug 24;138(33):10546-53. doi: 10.1021/jacs.6b05429. Epub 2016 Aug 9.
3
Talin: a mechanosensitive molecule in health and disease.
FASEB J. 2016 Jun;30(6):2073-85. doi: 10.1096/fj.201500080R. Epub 2016 Feb 22.
4
CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2490-5. doi: 10.1073/pnas.1522946113. Epub 2016 Feb 16.
5
Work Done by Titin Protein Folding Assists Muscle Contraction.
Cell Rep. 2016 Feb 16;14(6):1339-1347. doi: 10.1016/j.celrep.2016.01.025. Epub 2016 Feb 4.
6
Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo.
Science. 2015 Apr 24;348(6233):457-60. doi: 10.1126/science.1261909. Epub 2015 Apr 23.
7
The elastic free energy of a tandem modular protein under force.
Biochem Biophys Res Commun. 2015 May 1;460(2):434-8. doi: 10.1016/j.bbrc.2015.03.051. Epub 2015 Mar 18.
8
Chaperones rescue luciferase folding by separating its domains.
J Biol Chem. 2014 Oct 10;289(41):28607-18. doi: 10.1074/jbc.M114.582049. Epub 2014 Aug 26.
10
Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling.
Cell. 2014 Apr 10;157(2):357-368. doi: 10.1016/j.cell.2014.02.053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验