Suppr超能文献

细胞色素 P450cam 中的活性部位水合作用和水扩散:一个高度动态的过程。

Active-site hydration and water diffusion in cytochrome P450cam: a highly dynamic process.

机构信息

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA.

出版信息

Biophys J. 2011 Sep 21;101(6):1493-503. doi: 10.1016/j.bpj.2011.08.020. Epub 2011 Sep 20.

Abstract

Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

摘要

对脱辅基(即不含樟脑)和樟脑结合态细胞色素 P450cam(CYP101)进行了长达 300ns 的长时分子动力学模拟。在没有有偏采样方法的情况下,观察到水在蛋白质活性部位的扩散进出。在分子动力学模拟过程中,在脱辅基形式的樟脑结合部位观察到平均 6.4 个水分子,而在底物结合形式的结合部位观察到零个水分子,与同一物种的晶体结构中观察到的水分子数量一致。然而,在脱辅基 P450cam 的活性部位的樟脑结合区域,在给定时间内可以存在多达 12 个水分子,这表明蛋白质活性部位的水合过程具有高度动态性,水分子与主体溶剂迅速交换。还发现水分子在活性部位内频繁交换位置,优先在晶体结构中观察到的水分子周围的区域聚集。平均力势计算确定了水分子在蛋白质活性部位和主体溶剂之间扩散的热力学有利的跨蛋白途径。樟脑在活性部位的结合改变了 P450cam 通道的自由能景观,有利于水分子从蛋白质活性部位扩散出来。

相似文献

1
Active-site hydration and water diffusion in cytochrome P450cam: a highly dynamic process.
Biophys J. 2011 Sep 21;101(6):1493-503. doi: 10.1016/j.bpj.2011.08.020. Epub 2011 Sep 20.
4
Substrate-Dependent Allosteric Regulation in Cytochrome P450cam (CYP101A1).
J Am Chem Soc. 2018 Nov 28;140(47):16222-16228. doi: 10.1021/jacs.8b09441. Epub 2018 Nov 13.
6
Mapping the Substrate Recognition Pathway in Cytochrome P450.
J Am Chem Soc. 2018 Dec 19;140(50):17743-17752. doi: 10.1021/jacs.8b10840. Epub 2018 Dec 10.
8
Partial Opening of Cytochrome P450cam (CYP101A1) Is Driven by Allostery and Putidaredoxin Binding.
Biochemistry. 2021 Oct 5;60(39):2932-2942. doi: 10.1021/acs.biochem.1c00406. Epub 2021 Sep 14.
9
Unexpected Differences between Two Closely Related Bacterial P450 Camphor Monooxygenases.
Biochemistry. 2020 Jul 28;59(29):2743-2750. doi: 10.1021/acs.biochem.0c00366. Epub 2020 Jul 15.
10
Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.
J Chem Theory Comput. 2016 Apr 12;12(4):2110-20. doi: 10.1021/acs.jctc.6b00212. Epub 2016 Mar 28.

引用本文的文献

1
Reconciling conformational heterogeneity and substrate recognition in cytochrome P450.
Biophys J. 2021 May 4;120(9):1732-1745. doi: 10.1016/j.bpj.2021.02.040. Epub 2021 Mar 4.
2
Specificity and mechanism of carbohydrate demethylation by cytochrome P450 monooxygenases.
Biochem J. 2018 Dec 12;475(23):3875-3886. doi: 10.1042/BCJ20180762.
3
Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations.
Sci Rep. 2017 Aug 10;7(1):7736. doi: 10.1038/s41598-017-07993-0.
4
General trends of dihedral conformational transitions in a globular protein.
Proteins. 2016 Apr;84(4):501-14. doi: 10.1002/prot.24996. Epub 2016 Feb 15.
5
Dynamics of CYP51: implications for function and inhibitor design.
J Mol Recognit. 2015 Feb;28(2):59-73. doi: 10.1002/jmr.2412. Epub 2015 Jan 20.
6
A flexible glutamine regulates the catalytic activity of toluene o-xylene monooxygenase.
Biochemistry. 2014 Jun 10;53(22):3585-92. doi: 10.1021/bi500387y. Epub 2014 May 29.
7
Zaccai neutron resilience and site-specific hydration dynamics in a globular protein.
Eur Phys J E Soft Matter. 2013 Jul;36(7):72. doi: 10.1140/epje/i2013-13072-5. Epub 2013 Jul 16.
9
Solution structural ensembles of substrate-free cytochrome P450(cam).
Biochemistry. 2012 Apr 24;51(16):3383-93. doi: 10.1021/bi300007r. Epub 2012 Apr 10.
10
Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms.
J Chem Inf Model. 2012 Mar 26;52(3):617-48. doi: 10.1021/ci200542m. Epub 2012 Feb 17.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
P450cam visits an open conformation in the absence of substrate.
Biochemistry. 2010 Apr 27;49(16):3412-9. doi: 10.1021/bi100183g.
7
Dynamics of water molecules in the active-site cavity of human cytochromes P450.
J Phys Chem B. 2007 May 17;111(19):5445-57. doi: 10.1021/jp070390c. Epub 2007 Apr 19.
8
A comparison of methods to compute the potential of mean force.
Chemphyschem. 2007 Jan 8;8(1):162-9. doi: 10.1002/cphc.200600527.
9
The ins and outs of cytochrome P450s.
Biochim Biophys Acta. 2007 Mar;1770(3):390-401. doi: 10.1016/j.bbagen.2006.07.005. Epub 2006 Jul 21.
10
CAVER: a new tool to explore routes from protein clefts, pockets and cavities.
BMC Bioinformatics. 2006 Jun 22;7:316. doi: 10.1186/1471-2105-7-316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验