Suppr超能文献

SagS 有助于运动-静止转换,并与 BfiSR 协同作用,以促进铜绿假单胞菌生物膜的形成。

SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation.

机构信息

Binghamton University, State University of New York at Binghamton, Department of Biological Sciences, 85 Murray Hill Road, Binghamton, NY 13902, USA.

出版信息

J Bacteriol. 2011 Dec;193(23):6614-28. doi: 10.1128/JB.00305-11. Epub 2011 Sep 23.

Abstract

The interaction of Pseudomonas aeruginosa with surfaces has been described as a two-stage process requiring distinct signaling events and the reciprocal modulation of small RNAs (sRNAs). However, little is known regarding the relationship between sRNA-modulating pathways active under planktonic or surface-associated growth conditions. Here, we demonstrate that SagS (PA2824), the cognate sensor of HptB, links sRNA-modulating activities via the Gac/HptB/Rsm system postattachment to the signal transduction network BfiSR, previously demonstrated to be required for the development of P. aeruginosa. Consistent with the role of SagS in the GacA-dependent HtpB signaling pathway, inactivation of sagS resulted in hyperattachment, an HptB-dependent increase in rsmYZ, increased Psl polysaccharide production, and increased virulence. Moreover, sagS inactivation rescued attachment but abrogated biofilm formation by the ΔgacA and ΔhptB mutant strains. The ΔsagS strain was impaired in biofilm formation at a stage similar to that of the previously described two-component system BfiSR. Expression of bfiR but not bfiS restored ΔsagS biofilm formation independently of rsmYZ. We demonstrate that SagS interacts directly with BfiS and only indirectly with BfiR, with the direct and specific interaction between these two membrane-bound sensors resulting in the modulation of the phosphorylation state of BfiS in a growth-mode-dependent manner. SagS plays an important role in P. aeruginosa virulence in a manner opposite to that of BfiS. Our findings indicate that SagS acts as a switch by linking the GacA-dependent sensory system under planktonic conditions to the suppression of sRNAs postattachment and to BfiSR, required for the development of P. aeruginosa biofilms, in a sequential and stage-specific manner.

摘要

铜绿假单胞菌与表面的相互作用被描述为一个需要独特信号事件和小 RNA(sRNA)的相互调节的两阶段过程。然而,对于浮游或表面相关生长条件下的 sRNA 调节途径之间的关系知之甚少。在这里,我们证明 SagS(PA2824),HptB 的同源传感器,通过附着后与信号转导网络 BfiSR 连接 sRNA 调节活性,先前证明 BfiSR 是铜绿假单胞菌发育所必需的。与 SagS 在 GacA 依赖性 HtpB 信号通路中的作用一致,sagS 的失活导致超附着,即 HptB 依赖性 rsmYZ 增加,增加 Psl 多糖产生和增加毒力。此外,sagS 失活挽救了附着,但通过 ΔgacA 和 ΔhptB 突变株消除了生物膜形成。ΔsagS 菌株在生物膜形成阶段类似于先前描述的双组分系统 BfiSR 受损。bfiR 的表达但不是 bfiS 的表达独立于 rsmYZ 恢复了 ΔsagS 生物膜形成。我们证明 SagS 与 BfiS 直接相互作用,而仅与 BfiR 间接相互作用,这两个膜结合传感器之间的直接和特异性相互作用导致 BfiS 的磷酸化状态以生长模式依赖性方式被调节。SagS 以与 BfiS 相反的方式在铜绿假单胞菌毒力中发挥重要作用。我们的研究结果表明,SagS 作为一个开关,通过将浮游条件下的 GacA 依赖性感应系统与附着后的 sRNA 抑制以及生物膜形成所必需的 BfiSR 连接起来,以顺序和特定阶段的方式发挥作用。

相似文献

2
FleQ finetunes the expression of a subset of BrlR-activated genes to enable antibiotic tolerance by biofilms.
J Bacteriol. 2025 May 22;207(5):e0050324. doi: 10.1128/jb.00503-24. Epub 2025 Apr 30.
9
Controlling chronic Pseudomonas aeruginosa infections by strategically interfering with the sensory function of SagS.
Mol Microbiol. 2019 May;111(5):1211-1228. doi: 10.1111/mmi.14215. Epub 2019 Mar 26.

引用本文的文献

1
Microbial responses to antibiotics cryptically shift the direction of disease outcomes.
Sci Rep. 2025 Jul 2;15(1):22596. doi: 10.1038/s41598-025-02930-y.
2
FleQ finetunes the expression of a subset of BrlR-activated genes to enable antibiotic tolerance by biofilms.
J Bacteriol. 2025 May 22;207(5):e0050324. doi: 10.1128/jb.00503-24. Epub 2025 Apr 30.
4
Transcriptional Regulators Controlling Virulence in .
Int J Mol Sci. 2023 Jul 25;24(15):11895. doi: 10.3390/ijms241511895.
6
MoaB1 Homologs Contribute to Biofilm Formation and Motility by Pseudomonas aeruginosa and Escherichia coli.
J Bacteriol. 2023 May 25;205(5):e0000423. doi: 10.1128/jb.00004-23. Epub 2023 Apr 26.
7
Prevention and Eradication of Biofilm by Dendrimers: A Possibility Still Little Explored.
Pharmaceutics. 2022 Sep 22;14(10):2016. doi: 10.3390/pharmaceutics14102016.
8
Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis.
Adv Exp Med Biol. 2022;1386:371-395. doi: 10.1007/978-3-031-08491-1_14.
9
Controlling Biofilm Development Through Cyclic di-GMP Signaling.
Adv Exp Med Biol. 2022;1386:69-94. doi: 10.1007/978-3-031-08491-1_3.
10
Conquering the host: spp. and molecular regulators in lung infection.
Front Microbiol. 2022 Sep 26;13:983149. doi: 10.3389/fmicb.2022.983149. eCollection 2022.

本文引用的文献

2
Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA.
Mol Microbiol. 2010 Oct;78(1):158-72. doi: 10.1111/j.1365-2958.2010.07320.x. Epub 2010 Aug 2.
4
Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis.
Mol Microbiol. 2010 Jun;76(6):1427-43. doi: 10.1111/j.1365-2958.2010.07146.x. Epub 2010 Apr 1.
5
A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development.
PLoS Pathog. 2009 Nov;5(11):e1000668. doi: 10.1371/journal.ppat.1000668. Epub 2009 Nov 20.
9
Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA.
Mol Microbiol. 2009 May;72(3):612-32. doi: 10.1111/j.1365-2958.2009.06670.x.
10
Modeling Pseudomonas aeruginosa pathogenesis in plant hosts.
Nat Protoc. 2009;4(2):117-24. doi: 10.1038/nprot.2008.224.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验