Barraud Nicolas, Schleheck David, Klebensberger Janosch, Webb Jeremy S, Hassett Daniel J, Rice Scott A, Kjelleberg Staffan
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
J Bacteriol. 2009 Dec;191(23):7333-42. doi: 10.1128/JB.00975-09. Epub 2009 Oct 2.
Bacteria in biofilms often undergo active dispersal events and revert to a free-swimming, planktonic state to complete the biofilm life cycle. The signaling molecule nitric oxide (NO) was previously found to trigger biofilm dispersal in the opportunistic pathogen Pseudomonas aeruginosa at low, nontoxic concentrations (N. Barraud, D. J. Hassett, S. H. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188:7344-7353, 2006). NO was further shown to increase cell motility and susceptibility to antimicrobials. Recently, numerous studies revealed that increased degradation of the secondary messenger cyclic di-GMP (c-di-GMP) by specific phosphodiesterases (PDEs) triggers a planktonic mode of growth in eubacteria. In this study, the potential link between NO and c-di-GMP signaling was investigated by performing (i) PDE inhibitor studies, (ii) enzymatic assays to measure PDE activity, and (iii) direct quantification of intracellular c-di-GMP levels. The results suggest a role for c-di-GMP signaling in triggering the biofilm dispersal event induced by NO, as dispersal requires PDE activity and addition of NO stimulates PDE and induces the concomitant decrease in intracellular c-di-GMP levels in P. aeruginosa. Furthermore, gene expression studies indicated global responses to low, nontoxic levels of NO in P. aeruginosa biofilms, including upregulation of genes involved in motility and energy metabolism and downregulation of adhesins and virulence factors. Finally, site-directed mutagenesis of candidate genes and physiological characterization of the corresponding mutant strains uncovered that the chemotaxis transducer BdlA is involved in the biofilm dispersal response induced by NO.
生物膜中的细菌常常经历主动扩散事件,并恢复到自由游动的浮游状态以完成生物膜的生命周期。先前发现信号分子一氧化氮(NO)在低浓度、无毒的情况下能触发机会致病菌铜绿假单胞菌的生物膜扩散(N. 巴劳德、D. J. 哈西特、S. H. 黄、S. A. 赖斯、S. 克耶勒贝格和J. S. 韦伯,《细菌学杂志》188:7344 - 7353,2006年)。进一步研究表明,NO能增强细胞运动性以及对抗菌剂的敏感性。最近,大量研究显示,特定磷酸二酯酶(PDEs)对第二信使环二鸟苷酸(c - di - GMP)降解的增加会触发真细菌的浮游生长模式。在本研究中,通过进行以下实验来探究NO与c - di - GMP信号传导之间的潜在联系:(i)PDE抑制剂研究;(ii)测量PDE活性的酶促测定;(iii)细胞内c - di - GMP水平的直接定量。结果表明,c - di - GMP信号传导在触发由NO诱导的生物膜扩散事件中发挥作用,因为扩散需要PDE活性,并且添加NO会刺激PDE并导致铜绿假单胞菌细胞内c - di - GMP水平随之降低。此外,基因表达研究表明,铜绿假单胞菌生物膜对低浓度、无毒水平的NO存在全局性反应,包括参与运动性和能量代谢的基因上调以及粘附素和毒力因子的基因下调。最后,对候选基因进行定点诱变以及对相应突变菌株进行生理学特征分析发现,趋化转导蛋白BdlA参与了由NO诱导的生物膜扩散反应。