Suppr超能文献

铜绿假单胞菌双鸟苷酸环化酶 GcbA,荧光假单胞菌 GcbA 的同源物,通过调节运动能力促进初始附着到表面,但不促进生物膜形成。

The Pseudomonas aeruginosa diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation of motility.

机构信息

Department of Biological Sciences, Binghamton University, Binghamton, New York, USA.

Department of Biological Sciences, Binghamton University, Binghamton, New York, USA

出版信息

J Bacteriol. 2014 Aug;196(15):2827-41. doi: 10.1128/JB.01628-14. Epub 2014 Jun 2.

Abstract

Cyclic di-GMP is a conserved signaling molecule regulating the transitions between motile and sessile modes of growth in a variety of bacterial species. Recent evidence suggests that Pseudomonas species harbor separate intracellular pools of c-di-GMP to control different phenotypic outputs associated with motility, attachment, and biofilm formation, with multiple diguanylate cyclases (DGCs) playing distinct roles in these processes, yet little is known about the potential conservation of functional DGCs across Pseudomonas species. In the present study, we demonstrate that the P. aeruginosa homolog of the P. fluorescens DGC GcbA involved in promoting biofilm formation via regulation of swimming motility likewise synthesizes c-di-GMP to regulate surface attachment via modulation of motility, however, without affecting subsequent biofilm formation. P. aeruginosa GcbA was found to regulate flagellum-driven motility by suppressing flagellar reversal rates in a manner independent of viscosity, surface hardness, and polysaccharide production. P. fluorescens GcbA was found to be functional in P. aeruginosa and was capable of restoring phenotypes associated with inactivation of gcbA in P. aeruginosa to wild-type levels. Motility and attachment of a gcbA mutant strain could be restored to wild-type levels via overexpression of the small regulatory RNA RsmZ. Furthermore, epistasis analysis revealed that while both contribute to the regulation of initial surface attachment and flagellum-driven motility, GcbA and the phosphodiesterase DipA act within different signaling networks to regulate these processes. Our findings expand the complexity of c-di-GMP signaling in the regulation of the motile-sessile switch by providing yet another potential link to the Gac/Rsm network and suggesting that distinct c-di-GMP-modulating signaling pathways can regulate a single phenotypic output.

摘要

环二鸟苷酸(cyclic di-GMP)是一种保守的信号分子,调节多种细菌从运动状态到静止状态的转变。最近的证据表明,假单胞菌拥有独立的细胞内环二鸟苷酸(c-di-GMP)库,以控制与运动、附着和生物膜形成相关的不同表型输出,多个双鸟苷酸环化酶(DGC)在这些过程中发挥不同的作用,但关于假单胞菌物种中功能 DGC 的潜在保守性知之甚少。在本研究中,我们证明了与促进生物膜形成有关的荧光假单胞菌 DGC GcbA 的铜绿假单胞菌同源物同样通过调节游泳运动来合成 c-di-GMP 以调节表面附着,但不影响随后的生物膜形成。发现铜绿假单胞菌 GcbA 通过抑制鞭毛反转率来调节鞭毛驱动的运动,这种方式不依赖于粘度、表面硬度和多糖产生。发现荧光假单胞菌 GcbA 在铜绿假单胞菌中具有功能,并且能够将与 gcbA 失活相关的表型恢复到野生型水平。通过过度表达小调控 RNA RsmZ,可以将 gcbA 突变株的运动和附着恢复到野生型水平。此外,上位性分析表明,虽然 GcbA 和磷酸二酯酶 DipA 都有助于初始表面附着和鞭毛驱动的运动调节,但它们作用于不同的信号网络来调节这些过程。我们的研究结果通过提供另一个与 Gac/Rsm 网络的潜在联系,并表明不同的 c-di-GMP 调节信号通路可以调节单个表型输出,从而扩展了 c-di-GMP 信号在调节运动-静止开关中的复杂性。

相似文献

2
The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA.
J Bacteriol. 2015 Jan 1;197(1):174-87. doi: 10.1128/JB.02244-14. Epub 2014 Oct 20.
3
Regulation of flagellar motor switching by c-di-GMP phosphodiesterases in .
J Biol Chem. 2019 Sep 13;294(37):13789-13799. doi: 10.1074/jbc.RA119.009009. Epub 2019 Jul 26.
4
FlhF affects the subcellular clustering of WspR through HsbR in .
Appl Environ Microbiol. 2024 Jan 24;90(1):e0154823. doi: 10.1128/aem.01548-23. Epub 2023 Dec 19.
5
The c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and Pf4 Bacteriophage Production in Pseudomonas aeruginosa PAO1.
Appl Environ Microbiol. 2022 Jun 28;88(12):e0003922. doi: 10.1128/aem.00039-22. Epub 2022 May 31.
6
Role of Cyclic Di-GMP and Exopolysaccharide in Type IV Pilus Dynamics.
J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00859-16. Print 2017 Apr 15.
7
Expression of the diguanylate cyclase GcbA is regulated by FleQ in response to cyclic di-GMP in Pseudomonas putida KT2440.
Environ Microbiol Rep. 2016 Dec;8(6):993-1002. doi: 10.1111/1758-2229.12478. Epub 2016 Oct 28.
9
Flagellar Stators Stimulate c-di-GMP Production by Pseudomonas aeruginosa.
J Bacteriol. 2019 Aug 22;201(18). doi: 10.1128/JB.00741-18. Print 2019 Sep 15.

引用本文的文献

1
SadB, a mediator of AmrZ proteolysis and biofilm development in Pseudomonas aeruginosa.
NPJ Biofilms Microbiomes. 2025 May 13;11(1):77. doi: 10.1038/s41522-025-00710-0.
2
FleQ finetunes the expression of a subset of BrlR-activated genes to enable antibiotic tolerance by biofilms.
J Bacteriol. 2025 May 22;207(5):e0050324. doi: 10.1128/jb.00503-24. Epub 2025 Apr 30.
3
Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection.
Nat Microbiol. 2024 Dec;9(12):3284-3303. doi: 10.1038/s41564-024-01842-3. Epub 2024 Oct 25.
4
The surface interface and swimming motility influence surface-sensing responses in .
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2411981121. doi: 10.1073/pnas.2411981121. Epub 2024 Sep 16.
5
Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production.
Antibiotics (Basel). 2024 Jul 24;13(8):688. doi: 10.3390/antibiotics13080688.
6
Identifying the suite of genes central to swimming in the biocontrol bacterium Pf-5.
Microb Genom. 2024 Mar;10(3). doi: 10.1099/mgen.0.001212.
7
Adaption of F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub.
Microorganisms. 2023 Apr 15;11(4):1037. doi: 10.3390/microorganisms11041037.
9
The Alginate and Motility Regulator AmrZ is Essential for the Regulation of the Dispersion Response by Biofilms.
mSphere. 2022 Dec 21;7(6):e0050522. doi: 10.1128/msphere.00505-22. Epub 2022 Nov 14.
10
Controlling Biofilm Development Through Cyclic di-GMP Signaling.
Adv Exp Med Biol. 2022;1386:69-94. doi: 10.1007/978-3-031-08491-1_3.

本文引用的文献

1
ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa.
PLoS Pathog. 2014 Mar 6;10(3):e1003984. doi: 10.1371/journal.ppat.1003984. eCollection 2014 Mar.
3
BswR controls bacterial motility and biofilm formation in Pseudomonas aeruginosa through modulation of the small RNA rsmZ.
Nucleic Acids Res. 2014 Apr;42(7):4563-76. doi: 10.1093/nar/gku106. Epub 2014 Feb 3.
5
The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ.
J Bacteriol. 2013 Oct;195(20):4678-88. doi: 10.1128/JB.00834-13. Epub 2013 Aug 9.
7
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger.
Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52. doi: 10.1128/MMBR.00043-12.
8
Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20632-6. doi: 10.1073/pnas.1217993109. Epub 2012 Nov 21.
9
Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16690-5. doi: 10.1073/pnas.1207832109. Epub 2012 Sep 24.
10
PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms.
J Bacteriol. 2012 Nov;194(21):5817-28. doi: 10.1128/JB.00780-12. Epub 2012 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验