Washington University School of Medicine, Department of Radiology, St. Louis, Missouri 63110, USA.
J Biomed Opt. 2011 Sep;16(9):096016. doi: 10.1117/1.3626212.
The specificity of molecular and functional photoacoustic (PA) images depends on the accuracy of the photoacoustic absorption spectroscopy. The PA signal is proportional to the product of the optical absorption coefficient and local light fluence; quantitative PA measurements of the optical absorption coefficient therefore require an accurate estimation of optical fluence. Light-modeling aided by diffuse optical tomography (DOT) can be used to map the required fluence and to reduce errors in traditional PA spectroscopic analysis. As a proof-of-concept, we designed a tissue-mimicking phantom to demonstrate how fluence-related artifacts in PA images can lead to misrepresentations of tissue properties. To correct for these inaccuracies, the internal fluence in the tissue phantom was estimated by using DOT to reconstruct spatial distributions of the absorption and reduced scattering coefficients of multiple targets within the phantom. The derived fluence map, which only consisted of low spatial frequency components, was used to correct PA images of the phantom. Once calibrated to a known absorber, this method reduced errors in estimated absorption coefficients from 33% to 6%. These results experimentally demonstrate that combining DOT with PA imaging can significantly reduce fluence-related errors in PA images, while producing quantitatively accurate, high-resolution images of the optical absorption coefficient.
分子和功能光声(PA)图像的特异性取决于光声吸收光谱的准确性。PA 信号与光吸收系数和局部光强度的乘积成正比;因此,光吸收系数的定量 PA 测量需要准确估计光强度。通过漫射光学断层扫描(DOT)辅助的光建模可用于绘制所需的强度,并减少传统 PA 光谱分析中的误差。作为概念验证,我们设计了一个组织模拟体模,以演示 PA 图像中与强度相关的伪影如何导致对组织性质的错误表示。为了纠正这些不准确性,通过 DOT 重建体模内多个目标的吸收和散射系数的空间分布来估计组织体模中的内部强度。仅由低空间频率分量组成的导出强度图用于校正体模的 PA 图像。一旦校准到已知的吸收体,该方法可将吸收系数的估计误差从 33%降低到 6%。这些结果实验证明,将 DOT 与 PA 成像相结合可以显著降低 PA 图像中的与强度相关的误差,同时生成定量准确、高分辨率的光吸收系数图像。
IEEE Trans Biomed Eng. 2019-3-12
IEEE Trans Biomed Eng. 2012-2-13
Comput Biol Med. 2018-4-22
J Phys Chem B. 2024-7-25
J Biomed Opt. 2024-1
J Biomed Opt. 2023-11
Biomed Opt Express. 2022-9-30
Appl Opt. 2010-6-20
Chem Rev. 2010-5-12
IEEE Trans Ultrason Ferroelectr Freq Control. 2009-11
Nat Nanotechnol. 2009-8-23
IEEE Trans Med Imaging. 2009-7-21