Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Nov;56(11):2482-91. doi: 10.1109/TUFFC.2009.1335.
Polymer microring resonators have been exploited for high-sensitivity and wideband photoacoustic imaging. To demonstrate high-sensitivity ultrasound detection, highfrequency photoacoustic imaging of a 49-microm-diameter black bead at an imaging depth of 5 mm was imaged photoacoustically using a synthetic 2-D array with 249 elements and a low laser fluence of 0.35 mJ/cm(2). A bandpass filter with a center frequency of 28 MHz and a bandwidth of 16 MHz was applied to all element data but without signal averaging, and a signal-to-noise ratio of 16.4 dB was obtained. A wideband detector response is essential for imaging reconstruction of multiscale objects, e.g., various sizes of tissues, by using a range of characteristic acoustic wavelengths. A simulation of photoacoustic tomography of beads shows that objects with their boundaries characteristic of high spatial frequencies and the inner structure primarily of low spatial frequency components can be faithfully reconstructed using such a detector. Photoacoustic tomography experiments of 49- and 301-microm-diameter beads were presented. A high resolution of 12.5 microm was obtained. The boundary of a 301-microm bead was imaged clearly. The results demonstrated that the high sensitivity and broadband response of polymer microring resonators have potential for high resolution and high-fidelity photoacoustic imaging.
聚合物微环谐振器已被用于高灵敏度和宽带光声成象。为了演示高灵敏度的超声检测,使用具有 249 个元件的合成 2-D 阵列和低激光强度 0.35 mJ/cm(2),对位于 5mm 成像深度处的 49μm 直径黑珠进行高频光声成像。将中心频率为 28MHz 且带宽为 16MHz 的带通滤波器应用于所有元件数据,但不进行信号平均,得到的信噪比为 16.4dB。宽带探测器响应对于通过使用各种特征声波波长对多尺度物体(例如各种尺寸的组织)的成像重建是必不可少的。珠子的光声断层扫描模拟表明,使用这种探测器可以忠实地重建具有高空间频率特征边界和主要由低空间频率分量组成的内部结构的物体。还呈现了 49μm 和 301μm 直径珠子的光声断层扫描实验。获得了 12.5μm 的高分辨率。清晰地对 301μm 珠子的边界进行了成像。结果表明,聚合物微环谐振器的高灵敏度和宽带响应有可能实现高分辨率和高保真度的光声成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2009-11
IEEE Trans Ultrason Ferroelectr Freq Control. 2007-5
J Biomed Opt. 2008
IEEE Trans Ultrason Ferroelectr Freq Control. 2009-11
Appl Phys Lett. 2008-5-12
Ultrasound Med Biol. 2011-1-26
Nano Converg. 2023-6-20
Sensors (Basel). 2022-12-6
Light Sci Appl. 2018-8-15
Photoacoustics. 2014-4-24
Curr Med Imaging Rev. 2013-11
Laser Photon Rev. 2013-9-1
IEEE J Sel Top Quantum Electron. 2008-1
Opt Express. 2006-10-2
Appl Phys Lett. 2008-5-12
IEEE Trans Ultrason Ferroelectr Freq Control. 2000
IEEE Trans Ultrason Ferroelectr Freq Control. 2007-5
IEEE Trans Ultrason Ferroelectr Freq Control. 2007-5
J Biomed Opt. 2006
IEEE Trans Ultrason Ferroelectr Freq Control. 2006-1