文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光声成象迈向临床应用:聚焦于医学实际应用的教程综述

Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine.

机构信息

Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands.

出版信息

J Biomed Opt. 2023 Dec;28(12):121205. doi: 10.1117/1.JBO.28.12.121205. Epub 2023 Jun 8.


DOI:10.1117/1.JBO.28.12.121205
PMID:37304059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10249868/
Abstract

SIGNIFICANCE: Photoacoustic imaging (PAI) enables the visualization of optical contrast with ultrasonic imaging. It is a field of intense research, with great promise for clinical application. Understanding the principles of PAI is important for engineering research and image interpretation. AIM: In this tutorial review, we lay out the imaging physics, instrumentation requirements, standardization, and some practical examples for (junior) researchers, who have an interest in developing PAI systems and applications for clinical translation or applying PAI in clinical research. APPROACH: We discuss PAI principles and implementation in a shared context, emphasizing technical solutions that are amenable to broad clinical deployment, considering factors such as robustness, mobility, and cost in addition to image quality and quantification. RESULTS: Photoacoustics, capitalizing on endogenous contrast or administered contrast agents that are approved for human use, yields highly informative images in clinical settings, which can support diagnosis and interventions in the future. CONCLUSION: PAI offers unique image contrast that has been demonstrated in a broad set of clinical scenarios. The transition of PAI from a "nice-to-have" to a "need-to-have" modality will require dedicated clinical studies that evaluate therapeutic decision-making based on PAI and consideration of the actual value for patients and clinicians, compared with the associated cost.

摘要

意义:光声成像是一种利用超声成像来可视化光学对比度的技术。它是一个研究热点领域,在临床应用方面具有巨大的潜力。了解光声成像的原理对于工程研究和图像解释都很重要。

目的:在本教程综述中,我们为有兴趣开发用于临床转化的光声成像系统和应用,或在临床研究中应用光声成像的(初级)研究人员,阐述了成像物理、仪器要求、标准化以及一些实际示例。

方法:我们在共享的上下文中讨论光声成像的原理和实现,强调了易于广泛临床部署的技术解决方案,除了图像质量和量化之外,还考虑了稳健性、移动性和成本等因素。

结果:光声成像是利用内源性对比或已批准用于人体的外源性对比剂来实现的,它可以在临床环境中提供非常有价值的图像,未来可以支持诊断和干预。

结论:光声成像提供了独特的图像对比度,已经在广泛的临床场景中得到了证明。要将光声成像从“锦上添花”转变为“必不可少”的模式,需要进行专门的临床研究,根据光声成像来评估治疗决策,并考虑患者和临床医生的实际价值,以及相关成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/61994a224a8e/JBO-028-121205-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/7467f056bf8f/JBO-028-121205-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/f0efa498590d/JBO-028-121205-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/412e941c4800/JBO-028-121205-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/ceda05f4a097/JBO-028-121205-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/bc432ad0b55d/JBO-028-121205-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/0a9ddee21309/JBO-028-121205-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/6073b707ccbc/JBO-028-121205-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/de1e837c0238/JBO-028-121205-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/c397f1edd018/JBO-028-121205-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/d194b8b9ea84/JBO-028-121205-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/61889e458bf8/JBO-028-121205-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/8a13ed69f4f4/JBO-028-121205-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/31c0eb28d673/JBO-028-121205-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/2c54f0889cb5/JBO-028-121205-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/8b2032910d5e/JBO-028-121205-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/46d3ce041ea9/JBO-028-121205-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/61994a224a8e/JBO-028-121205-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/7467f056bf8f/JBO-028-121205-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/f0efa498590d/JBO-028-121205-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/412e941c4800/JBO-028-121205-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/ceda05f4a097/JBO-028-121205-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/bc432ad0b55d/JBO-028-121205-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/0a9ddee21309/JBO-028-121205-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/6073b707ccbc/JBO-028-121205-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/de1e837c0238/JBO-028-121205-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/c397f1edd018/JBO-028-121205-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/d194b8b9ea84/JBO-028-121205-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/61889e458bf8/JBO-028-121205-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/8a13ed69f4f4/JBO-028-121205-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/31c0eb28d673/JBO-028-121205-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/2c54f0889cb5/JBO-028-121205-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/8b2032910d5e/JBO-028-121205-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/46d3ce041ea9/JBO-028-121205-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc0/10249868/61994a224a8e/JBO-028-121205-g017.jpg

相似文献

[1]
Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine.

J Biomed Opt. 2023-12

[2]
Tutorial on phantoms for photoacoustic imaging applications.

J Biomed Opt. 2024-8

[3]
Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine.

Tissue Eng Part B Rev. 2020-2

[4]
Deep learning in photoacoustic imaging: a review.

J Biomed Opt. 2021-4

[5]
The emerging role of photoacoustic imaging in clinical oncology.

Nat Rev Clin Oncol. 2022-6

[6]
Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges.

Chem Rev. 2023-6-14

[7]
Simultaneous photoacoustic and ultrasound imaging: A review.

Ultrasonics. 2024-4

[8]
Compressed Sensing for Biomedical Photoacoustic Imaging: A Review.

Sensors (Basel). 2024-4-23

[9]
Opportunities for Photoacoustic-Guided Drug Delivery.

Curr Drug Targets. 2015

[10]
Photoacoustic imaging for cutaneous melanoma assessment: a comprehensive review.

J Biomed Opt. 2024-1

引用本文的文献

[1]
Advances in Photoacoustic Imaging of Breast Cancer.

Sensors (Basel). 2025-8-5

[2]
Supervised contrastive loss helps uncover more robust features for photoacoustic prostate cancer identification.

Front Oncol. 2025-7-9

[3]
Anthropomorphic tissue-mimicking phantoms for oximetry validation in multispectral optical imaging.

J Biomed Opt. 2025-7

[4]
Spectroscopic photoacoustic denoising framework using hybrid analytical and data-free learning method.

Photoacoustics. 2025-5-1

[5]
Nanophotonic-enhanced photoacoustic imaging for brain tumor detection.

J Nanobiotechnology. 2025-3-5

[6]
Multimodal Diagnostic Imaging of Metabolic Dysfunction-Associated Steatotic Liver Disease: Noninvasive Analyses by Photoacoustic Ultrasound and Magnetic Resonance Imaging.

Am J Pathol. 2025-5

[7]
Quantitative photoacoustic imaging using known chromophores as fluence marker.

Photoacoustics. 2024-12-19

[8]
Multifunctional gold nanoparticles for cancer theranostics.

3 Biotech. 2024-11

[9]
Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review.

Bioengineered. 2024-12

[10]
Near-infrared multispectral photoacoustic analysis of lipids and intraplaque hemorrhage in human carotid artery atherosclerosis.

Photoacoustics. 2024-7-22

本文引用的文献

[1]
Highly sensitive lipid detection and localization in atherosclerotic plaque with a dual-frequency intravascular photoacoustic/ultrasound catheter.

Transl Biophotonics. 2020-8

[2]
Full-visibility 3D imaging of oxygenation and blood flow by simultaneous multispectral photoacoustic fluctuation imaging (MS-PAFI) and ultrasound Doppler.

Sci Rep. 2023-2-20

[3]
A high-sensitivity high-resolution intravascular photoacoustic catheter through mode cleaning in a graded-index fiber.

Photoacoustics. 2023-1-6

[4]
LED-based photoacoustic imaging for preoperative visualization of lymphatic vessels in patients with secondary limb lymphedema.

Photoacoustics. 2022-12-28

[5]
An Investigation of Signal Preprocessing for Photoacoustic Tomography.

Sensors (Basel). 2023-1-2

[6]
Miniature intravascular photoacoustic endoscopy with coaxial excitation and detection.

J Biophotonics. 2023-4

[7]
Frequency wavelength multiplexed optoacoustic tomography.

Nat Commun. 2022-8-1

[8]
Superpixel spectral unmixing framework for the volumetric assessment of tissue chromophores: A photoacoustic data-driven approach.

Photoacoustics. 2022-5-11

[9]
Multispectral optoacoustic tomography for detection of lymph node metastases in oral cancer patients using an EGFR-targeted contrast agent and intrinsic tissue contrast: A proof-of-concept study.

Photoacoustics. 2022-4-29

[10]
The IPASC data format: A consensus data format for photoacoustic imaging.

Photoacoustics. 2022-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索