Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1198, New York, NY 10029, USA.
Am J Physiol Renal Physiol. 2012 Jan 1;302(1):F205-15. doi: 10.1152/ajprenal.00179.2011. Epub 2011 Sep 28.
Epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and BK channel-mediated K(+) secretion in the cortical collecting duct (CCD) are modulated by flow, the latter requiring an increase in intracellular Ca(2+) concentration (Ca(2+)), microtubule integrity, and exocytic insertion of preformed channels into the apical membrane. As axial flow modulates HCO(3)(-) reabsorption in the proximal tubule due to changes in both luminal Na(+)/H(+) exchanger 3 and H(+)-ATPase activity (Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein AM, Wang T. Am J Physiol Renal Physiol 290: F289-F296, 2006), we sought to test the hypothesis that flow also regulates H(+)-ATPase activity in the CCD. H(+)-ATPase activity was assayed in individually identified cells in microperfused CCDs isolated from New Zealand White rabbits, loaded with the pH-sensitive dye BCECF, and then subjected to an acute intracellular acid load (NH(4)Cl prepulse technique). H(+)-ATPase activity was defined as the initial rate of bafilomycin-inhibitable cell pH (pH(i)) recovery in the absence of luminal K(+), bilateral Na(+), and CO(2)/HCO(3)(-), from a nadir pH of ∼6.2. We found that 1) an increase in luminal flow rate from ∼1 to 5 nl·min(-1)·mm(-1) stimulated H(+)-ATPase activity, 2) flow-stimulated H(+) pumping was Ca(2+) dependent and required microtubule integrity, and 3) basal and flow-stimulated pH(i) recovery was detected in cells that labeled with the apical principal cell marker rhodamine Dolichos biflorus agglutinin as well as cells that did not. We conclude that luminal flow modulates H(+)-ATPase activity in the rabbit CCD and that H(+)-ATPases therein are present in both principal and intercalated cells.
上皮钠通道(ENaC)介导的钠(Na+)吸收和 BK 通道介导的钾(K+)分泌在皮质集合管(CCD)中受到流量的调节,后者需要增加细胞内 Ca2+浓度([Ca2+]i)、微管完整性和预先形成的通道向顶端膜的胞吐插入。由于管腔内的 Na+/H+交换器 3 和 H+-ATP 酶活性的变化,轴向流动调节近端小管中的 HCO3-重吸收(Du Z、Yan Q、Duan Y、Weinbaum S、Weinstein AM、Wang T. Am J Physiol Renal Physiol 290: F289-F296, 2006),我们试图验证这样一个假设,即流量也调节 CCD 中的 H+-ATP 酶活性。在从新西兰白兔分离的微灌注 CCD 中单独鉴定的细胞中测定 H+-ATP 酶活性,并用 pH 敏感染料 BCECF 加载,然后用急性细胞内酸负荷(NH4Cl 预脉冲技术)处理。H+-ATP 酶活性被定义为在不存在管腔内 K+、双侧 Na+和 CO2/HCO3-的情况下,从初始 pH 值约 6.2 的最低点 pH 值恢复的初始速率(pH(i))。我们发现:1)从约 1 到 5 nl·min-1·mm-1 的管腔内流速增加刺激 H+-ATP 酶活性;2)流动刺激的 H+泵浦依赖于 Ca2+,并需要微管完整性;3)在用顶端主细胞标记物 rhodamine Dolichos biflorus agglutinin 标记的细胞以及未标记的细胞中都检测到基础和流动刺激的 pH(i)恢复。我们得出结论,管腔内的流量调节了兔 CCD 中的 H+-ATP 酶活性,并且其中的 H+-ATP 酶存在于主细胞和闰细胞中。