Suppr超能文献

肾单位中的机械转导。

Mechanotransduction in the renal tubule.

机构信息

Dept. of Biomedical Engineering, The City College of New York, New York, NY 10031, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Dec;299(6):F1220-36. doi: 10.1152/ajprenal.00453.2010. Epub 2010 Sep 1.

Abstract

The role of mechanical forces in the regulation of glomerulotubular balance in the proximal tubule (PT) and Ca(2+) signaling in the distal nephron was first recognized a decade ago, when it was proposed that the microvilli in the PT and the primary cilium in the cortical collecting duct (CCD) acted as sensors of local tubular flow. In this review, we present a summary of the theoretical models and experiments that have been conducted to elucidate the structure and function of these unique apical structures in the modulation of Na(+), HCO(3)(-), and water reabsorption in the PT and Ca(2+) signaling in the CCD. We also contrast the mechanotransduction mechanisms in renal epithelium with those in other cells in which fluid shear stresses have been recognized to play a key role in initiating intracellular signaling, most notably endothelial cells, hair cells in the inner ear, and bone cells. In each case, small hydrodynamic forces need to be greatly amplified before they can be sensed by the cell's intracellular cytoskeleton to enable the cell to regulate its membrane transporters or stretch-activated ion channels in maintaining homeostasis in response to changing flow conditions.

摘要

机械力在调节近曲小管 (PT) 中的肾小球 - 肾小管平衡和远曲小管中的 Ca(2+)信号转导中的作用在十年前就已被首次认识到,当时提出 PT 中的微绒毛和皮质集合管 (CCD) 中的初级纤毛作为局部管状流的传感器。在这篇综述中,我们总结了已经进行的理论模型和实验,以阐明这些独特的顶端结构在调节 PT 中的 Na(+)、HCO(3)(-)和水重吸收以及 CCD 中的 Ca(2+)信号转导中的结构和功能。我们还将肾上皮细胞中的机械转导机制与其他已经认识到流体切应力在启动细胞内信号转导中起关键作用的细胞中的机制进行对比,尤其是内皮细胞、内耳毛细胞和骨细胞。在每种情况下,需要将小的流体动力大大放大,然后才能被细胞的细胞内细胞骨架感知,从而使细胞能够调节其膜转运蛋白或伸展激活的离子通道,以响应流动条件的变化维持体内平衡。

相似文献

1
Mechanotransduction in the renal tubule.
Am J Physiol Renal Physiol. 2010 Dec;299(6):F1220-36. doi: 10.1152/ajprenal.00453.2010. Epub 2010 Sep 1.
2
Effects of biomechanical forces on signaling in the cortical collecting duct (CCD).
Am J Physiol Renal Physiol. 2014 Jul 15;307(2):F195-204. doi: 10.1152/ajprenal.00634.2013. Epub 2014 May 28.
3
Discerning the role of mechanosensors in regulating proximal tubule function.
Am J Physiol Renal Physiol. 2016 Jan 1;310(1):F1-5. doi: 10.1152/ajprenal.00373.2015. Epub 2015 Oct 14.
4
Uninephrectomy and apical fluid shear stress decrease ENaC abundance in collecting duct principal cells.
Am J Physiol Renal Physiol. 2018 May 1;314(5):F763-F772. doi: 10.1152/ajprenal.00200.2017. Epub 2017 Sep 6.
5
Mechanosensory function of microvilli of the kidney proximal tubule.
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):13068-73. doi: 10.1073/pnas.0405179101. Epub 2004 Aug 19.
6
Regulation of glomerulotubular balance: flow-activated proximal tubule function.
Pflugers Arch. 2017 Jun;469(5-6):643-654. doi: 10.1007/s00424-017-1960-8. Epub 2017 Mar 7.
7
Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments.
Am J Physiol Renal Physiol. 2006 Feb;290(2):F289-96. doi: 10.1152/ajprenal.00255.2005. Epub 2005 Sep 6.
8
HCO-3 reabsorption in renal collecting duct of NHE-3-deficient mouse: a compensatory response.
Am J Physiol. 1999 Jun;276(6):F914-21. doi: 10.1152/ajprenal.1999.276.6.F914.
9
An unexpected journey: conceptual evolution of mechanoregulated potassium transport in the distal nephron.
Am J Physiol Cell Physiol. 2016 Feb 15;310(4):C243-59. doi: 10.1152/ajpcell.00328.2015. Epub 2015 Dec 2.
10
A hydrodynamic mechanosensory hypothesis for brush border microvilli.
Am J Physiol Renal Physiol. 2000 Oct;279(4):F698-712. doi: 10.1152/ajprenal.2000.279.4.F698.

引用本文的文献

1
Modelling and targeting mechanical forces in organ fibrosis.
Nat Rev Bioeng. 2024 Apr;2(4):305-323. doi: 10.1038/s44222-023-00144-3. Epub 2024 Jan 18.
2
Shear stress effects on epididymal epithelial cell via primary cilia mechanosensory signaling.
J Cell Physiol. 2025 Jan;240(1):e31475. doi: 10.1002/jcp.31475. Epub 2024 Nov 7.
6
Glomerular hyperfiltration as a therapeutic target for CKD.
Nephrol Dial Transplant. 2024 Jul 31;39(8):1228-1238. doi: 10.1093/ndt/gfae027.
8
Navigating the kidney organoid: insights into assessment and enhancement of nephron function.
Am J Physiol Renal Physiol. 2023 Dec 1;325(6):F695-F706. doi: 10.1152/ajprenal.00166.2023. Epub 2023 Sep 28.
9
Collective cell dynamics and luminal fluid flow in the epididymis: A mechanobiological perspective.
Andrology. 2024 Jul;12(5):939-948. doi: 10.1111/andr.13490. Epub 2023 Jul 17.

本文引用的文献

1
Molecular advances in autosomal dominant polycystic kidney disease.
Adv Chronic Kidney Dis. 2010 Mar;17(2):118-30. doi: 10.1053/j.ackd.2010.01.002.
2
Acute regulation of renal Na+/H+ exchanger NHE3 by dopamine: role of protein phosphatase 2A.
Am J Physiol Renal Physiol. 2010 May;298(5):F1205-13. doi: 10.1152/ajprenal.00708.2009. Epub 2010 Feb 24.
3
Mechanical properties of primary cilia regulate the response to fluid flow.
Am J Physiol Renal Physiol. 2010 May;298(5):F1096-102. doi: 10.1152/ajprenal.00657.2009. Epub 2010 Jan 20.
4
Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction.
Annu Rev Fluid Mech. 2009 Jan 1;41:347-374. doi: 10.1146/annurev.fluid.010908.165136.
5
Modeling proximal tubule cell homeostasis: tracking changes in luminal flow.
Bull Math Biol. 2009 Aug;71(6):1285-322. doi: 10.1007/s11538-009-9402-1. Epub 2009 Mar 12.
6
Attachment of osteocyte cell processes to the bone matrix.
Anat Rec (Hoboken). 2009 Mar;292(3):355-63. doi: 10.1002/ar.20869.
7
Making an effort to listen: mechanical amplification in the ear.
Neuron. 2008 Aug 28;59(4):530-45. doi: 10.1016/j.neuron.2008.07.012.
8
Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11418-23. doi: 10.1073/pnas.0804954105. Epub 2008 Aug 6.
10
Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1.
Hum Mol Genet. 2008 Jun 1;17(11):1505-16. doi: 10.1093/hmg/ddn039. Epub 2008 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验