Setty Yaki, Chen Chih-Chun, Secrier Maria, Skoblov Nikita, Kalamatianos Dimitrios, Emmott Stephen
Computational Science Laboratory, Microsoft Research, Cambridge, CB3 0FB, UK.
BMC Syst Biol. 2011 Sep 30;5:154. doi: 10.1186/1752-0509-5-154.
Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process.
The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration.
We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.
神经元迁移是指神经元从其起源位置迁移至大脑最终位置的过程,是正常脑发育和功能的核心过程。实验技术的进步揭示了许多参与该过程的分子成分。尽管有这些进展,但分子机制如何协同作用来控制迁移过程仍有待充分了解。在此,我们提出了一个神经元迁移的计算模型,其中四个关键分子实体,即Lis1、双皮质素(DCX)、Reelin和γ-氨基丁酸(GABA),形成了一个介导迁移过程的分子程序。
该模型模拟了动态迁移过程,与体内关于形态、细胞和群体水平现象的观察结果一致。具体而言,该模型再现了迁移阶段、细胞动力学和群体分布,与正常神经元发育中的实验观察结果相符。我们在Lis1和DCX活性降低的情况下测试了该模型,发现其发育异常,类似于Lis1和DCX沉默表达实验中的观察结果。对该模型的分析产生了可指导未来实验研究的意外见解。具体如下:(1)该模型揭示了在Lis1表达降低的条件下,神经元在多极阶段之前经历振荡性神经元-胶质细胞关联的可能性;(2)我们假设在大鼠和小鼠中观察到的形态变化可能由Lis1和DCX刺激双极运动方式的单一差异来解释。据此我们做出以下预测:(1)在Lis1降低且DCX表达增强的情况下,我们预测大鼠的双极迁移减少;(2)在小鼠DCX表达增强的情况下,我们预测双极迁移正常或增加。
我们在此提出了一个全系统的神经元迁移计算模型,该模型在精确、可测试的框架内整合了理论和数据。我们的模型解释了一系列可观察到的行为,并提供了一个计算框架来研究作为由相对简单的分子程序驱动的复杂过程的神经元迁移的各个方面。对该模型的分析产生了新的假设和尚未观察到的现象,可能会指导未来的实验研究。因此,本文报告了朝着全面的神经元迁移计算机模拟模型迈出的第一步。