Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA.
Cell. 2011 Sep 30;147(1):199-208. doi: 10.1016/j.cell.2011.07.046.
G protein-gated K(+) channels (Kir3.1-Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K(+) channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G proteins could open a G loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP(2) suggest that G proteins open only the G loop gate in the absence of PIP(2), but in the presence of PIP(2) the G loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na(+) ion-binding site, which would allow intracellular Na(+) to modulate GIRK channel activity. These data provide a structural basis for understanding multiligand regulation of GIRK channel gating.
G 蛋白门控钾离子通道(Kir3.1-Kir3.4)控制着许多不同细胞的电兴奋性。在与人类生理学和疾病相关的众多功能中,它们调节心率并控制着广泛的神经元活动。在这里,我们呈现了第一个 G 蛋白门控钾离子通道的晶体结构。通过将野生型结构与组成型激活突变体进行比较,我们确定了一种全局构象变化,通过这种变化,G 蛋白可以在细胞质结构域中打开 G 环门。在没有和存在 PIP2 的情况下,两种通道的结构表明,在没有 PIP2 的情况下,G 蛋白仅打开 G 环门,但在存在 PIP2 的情况下,G 环门和第二个内环门耦合,从而使两个门都打开。我们还鉴定了一个位于战略位置的钠离子结合位点,该位点允许细胞内钠离子调节 GIRK 通道活性。这些数据为理解 GIRK 通道门控的多配体调节提供了结构基础。