Technological Educational Institute of Western Macedonia, Pollution Control Technologies Department, Environmental Chemistry & Waste Water Treatment Lab., Koila of Kozani, Kozani 50100, Greece.
Talanta. 2011 Oct 15;85(5):2385-90. doi: 10.1016/j.talanta.2011.07.084. Epub 2011 Jul 29.
In this work, is given the Combined Standard Uncertainty (CSU) calculation procedure, which can be applied in spectrophotometric measurements. For the assessment of the computations, different approaches are discussed, such as the contribution to the Combined Standard Uncertainty of the reproducibility, the repeatability, the total bias, the calibration curve, and the type of the measurand. Results of inter-laboratory measurements confirmed the assumptions. For the minimization of the errors propagation a controlled experimental procedure was applied by this laboratory, called "errors propagation break-up" (ERBs). The uncertainty of sample concentration from a reference curve dominates the Combined Standard Uncertainty. The contribution of the method and the laboratory bias (total bias) to the CSU is insignificant under controlled conditions of a measurement. This work develops a simple methodology that can be utilized to evaluate the uncertainty and errors control on routine methods used both by academic researchers or the industrial sector.
在这项工作中,给出了可应用于分光光度测量的组合标准不确定度(CSU)计算程序。为了评估计算结果,讨论了不同的方法,例如再现性、重复性、总偏差、校准曲线和量值类型对组合标准不确定度的贡献。实验室间测量结果证实了这些假设。为了最小化误差传播,本实验室采用了一种称为“误差传播分解”(ERBs)的受控实验程序。参考曲线的样品浓度不确定度是组合标准不确定度的主要来源。在测量的受控条件下,方法和实验室偏差(总偏差)对 CSU 的贡献可以忽略不计。这项工作开发了一种简单的方法学,可以用于评估学术研究人员或工业部门使用的常规方法的不确定度和误差控制。