Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany.
J Neurosci Methods. 2012 Jan 15;203(1):233-40. doi: 10.1016/j.jneumeth.2011.09.013. Epub 2011 Sep 22.
The goal of the current study is to find a suitable classifier for electroencephalogram (EEG) data derived from a new learning paradigm which aims at communication in paralysis. A reflexive semantic classical (Pavlovian) conditioning paradigm is explored as an alternative to the operant learning paradigms, currently used in most brain-computer interfaces (BCIs). Comparable with a lie-detection experiment, subjects are presented with true and false statements. The EEG activity following true and false statements was classified with the aim to separate covert 'yes' from covert 'no' responses. Four classification algorithms are compared for classifying off-line data collected from a group of 14 healthy participants: (i) stepwise linear discriminant analysis (SWLDA), (ii) shrinkage linear discriminant analysis (SLDA), (iii) linear support vector machine (LIN-SVM) and (iv) radial basis function kernel support vector machine (RBF-SVM). The results indicate that all classifiers perform at chance level when separating conditioned 'yes' from conditioned 'no' responses. However, single conditioned reactions could be successfully classified on a single-trial basis (single conditioned reaction against a baseline interval). All of the four investigated classification methods achieve comparable performance, however results with RBF-SVM show the highest single-trial classification accuracy of 68.8%. The results suggest that the proposed paradigm may allow affirmative and negative (disapproving negative) communication in a BCI experiment.
本研究的目的是为一种新的学习范式(旨在实现瘫痪患者的交流)所产生的脑电图(EEG)数据找到合适的分类器。我们探索了一种反射性语义经典(巴甫洛夫)条件作用范式作为目前大多数脑机接口(BCI)中使用的操作性学习范式的替代方案。与测谎实验类似,向受试者呈现真实和虚假陈述。随后对真实和虚假陈述后的 EEG 活动进行分类,旨在将隐藏的“是”与隐藏的“否”反应分开。我们比较了四种分类算法,用于对一组 14 名健康参与者的离线数据进行分类:(i)逐步线性判别分析(SWLDA),(ii)收缩线性判别分析(SLDA),(iii)线性支持向量机(LIN-SVM)和(iv)径向基函数核支持向量机(RBF-SVM)。结果表明,当将条件“是”与条件“否”反应分开时,所有分类器的性能均处于随机水平。然而,在单个试验的基础上(单个条件反应与基线间隔相比),可以成功地对单个条件反应进行分类。四种被调查的分类方法都具有可比的性能,但是 RBF-SVM 的结果显示出最高的单次试验分类准确率为 68.8%。结果表明,所提出的范式可能允许在 BCI 实验中进行肯定和否定(否定否定)的交流。