Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
Exp Neurol. 2012 Jan;233(1):163-71. doi: 10.1016/j.expneurol.2011.09.020. Epub 2011 Sep 22.
Oxidative stress is commonly implicated in the pathogenesis of motor neuron disease. However, the cause and effect relationship between oxidative stress and motor neuron degeneration is poorly defined. We recently identified denervation at the neuromuscular junction in mice lacking the antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD1) (Fischer et al., 2011). These mice show a phenotype of progressive muscle atrophy and weakness in the setting of chronic oxidative stress. Here, we investigated further the extent of motor neuron pathology in this model, and the relationship between motor pathology and oxidative stress. We report preferential denervation of fast-twitch muscles beginning between 1 and 4 months of age, with relative sparing of slow-twitch muscle. Motor axon terminals in affected muscles show widespread sprouting and formation of large axonal swellings. We confirmed, as was previously reported, that spinal motor neurons and motor and sensory nerve roots in these mice are preserved, even out to 18 months of age. We also found preservation of distal sensory fibers in the epidermis, illustrating the specificity of pathology in this model for distal motor axons. Using HPLC measurement of the glutathione redox potential, we quantified oxidative stress in peripheral nerve and muscle at the onset of denervation. SOD1 knockout tibial nerve, but not gastrocnemius muscle, showed significant oxidation of the glutathione pool, suggesting that axonal degeneration is a consequence of impaired redox homeostasis in peripheral nerve. We conclude that the SOD1 knockout mouse is a model of oxidative stress-mediated motor axonopathy. Pathology in this model primarily affects motor axon terminals at the neuromuscular junction, demonstrating the vulnerability of this synapse to oxidative injury.
氧化应激通常与运动神经元疾病的发病机制有关。然而,氧化应激与运动神经元变性之间的因果关系尚不清楚。我们最近在缺乏抗氧化酶铜锌超氧化物歧化酶(SOD1)的小鼠中发现了神经肌肉接头的去神经支配(Fischer 等人,2011 年)。这些小鼠在慢性氧化应激的情况下表现出进行性肌肉萎缩和无力的表型。在这里,我们进一步研究了该模型中运动神经元病理的程度,以及运动病理与氧化应激之间的关系。我们报告说,快速抽搐肌肉的去神经支配始于 1 至 4 个月大,而缓慢抽搐肌肉相对保留。受影响肌肉中的运动轴突末梢显示广泛的发芽和大轴突肿胀的形成。我们证实了以前的报道,即这些小鼠的脊髓运动神经元和运动和感觉神经根即使在 18 个月大时也得以保留。我们还发现表皮中的远端感觉纤维得以保留,这说明了该模型中病理学对远端运动轴突的特异性。通过 HPLC 测量谷胱甘肽氧化还原电势,我们定量了神经变性开始时周围神经和肌肉中的氧化应激。SOD1 敲除的胫骨神经,但不是比目鱼肌,显示谷胱甘肽池的显著氧化,表明轴突退化是周围神经中氧化还原稳态受损的后果。我们得出结论,SOD1 敲除小鼠是氧化应激介导的运动轴突病的模型。该模型中的病理学主要影响神经肌肉接头处的运动轴突末梢,证明了这个突触对氧化损伤的易感性。