Suppr超能文献

微泡在脉动流作用下通过分支血管网络的传输。

Microbubble transport through a bifurcating vessel network with pulsatile flow.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2110, USA.

出版信息

Biomed Microdevices. 2012 Feb;14(1):131-43. doi: 10.1007/s10544-011-9591-x.

Abstract

Motivated by two-phase microfluidics and by the clinical applications of air embolism and a developmental gas embolotherapy technique, experimental and theoretical models of microbubble transport in pulsatile flow are presented. The one-dimensional time-dependent theoretical model is developed from an unsteady Bernoulli equation that has been modified to include viscous and unsteady effects. Results of both experiments and theory show that roll angle (the angle the plane of the bifurcating network makes with the horizontal) is an important contributor to bubble splitting ratio at each bifurcation within the bifurcating network. When compared to corresponding constant flow, pulsatile flow was shown to produce insignificant changes to the overall splitting ratio of the bubble despite the order one Womersley numbers, suggesting that bubble splitting through the vasculature could be modeled adequately with a more modest constant flow model. However, bubble lodging was affected by the flow pulsatility, and the effects of pulsatile flow were evident in the dependence of splitting ratio of bubble length. The ability of bubbles to remain lodged after reaching a steady state in the bifurcations is promising for the effectiveness of gas embolotherapy to occlude blood flow to tumors, and indicates the importance of understanding where lodging will occur in air embolism. The ability to accurately predict the bubble dynamics in unsteady flow within a bifurcating network is demonstrated and suggests the potential for bubbles in microfluidics devices to encode information in both steady and unsteady aspects of their dynamics.

摘要

受两相微流控以及空气栓塞的临床应用和发展性气体栓塞疗法技术的启发,提出了脉动流中微泡传输的实验和理论模型。一维时变理论模型是从一个经过修正以包含粘性和非定常效应的非定常伯努利方程中发展而来的。实验和理论结果均表明,在分叉网络内的每个分叉处,滚转角(分叉网络所在平面与水平方向所成的角度)是影响气泡分裂比的重要因素。与相应的恒定流相比,尽管脉动流的沃默斯利数为一阶,但对整个气泡的总体分裂比几乎没有影响,这表明通过血管的气泡分裂可以用更简单的恒定流模型来充分模拟。然而,气泡的滞留受到流脉动的影响,并且在气泡长度的分裂比依赖性中可以明显看出脉动流的影响。气泡在分叉处达到稳定状态后仍能滞留的能力有望使气体栓塞疗法有效阻断肿瘤的血流,这表明了解空气栓塞中何处会发生滞留的重要性。在分叉网络中对非定常流中的气泡动力学进行准确预测的能力已得到证明,并表明微流控装置中的气泡有可能在其动力学的稳态和非稳态方面编码信息。

相似文献

4
Small-bubble transport and splitting dynamics in a symmetric bifurcation.对称分支中的小气泡输运与分裂动力学
Comput Methods Biomech Biomed Engin. 2017 Aug;20(11):1182-1194. doi: 10.1080/10255842.2017.1340466. Epub 2017 Jun 28.
7
Microbubble expansion in a flexible tube.柔性管中的微泡膨胀。
J Biomech Eng. 2006 Aug;128(4):554-63. doi: 10.1115/1.2206200.
9
Cardiovascular bubble dynamics.心血管气泡动力学
Crit Rev Biomed Eng. 2005;33(4):299-346. doi: 10.1615/critrevbiomedeng.v33.i4.10.

本文引用的文献

1
Droplets formation and merging in two-phase flow microfluidics.两相流微流体中的液滴形成与合并
Int J Mol Sci. 2011;12(4):2572-97. doi: 10.3390/ijms12042572. Epub 2011 Apr 15.
2
Faster multiple emulsification with drop splitting.液滴分裂实现更快的复乳制备。
Lab Chip. 2011 Jun 7;11(11):1911-5. doi: 10.1039/c0lc00706d. Epub 2011 Apr 19.
5
Simulation of droplet trains in microfluidic networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):037303. doi: 10.1103/PhysRevE.82.037303. Epub 2010 Sep 30.
6
Logic control of microfluidics with smart colloid.智能胶体的微流控逻辑控制。
Lab Chip. 2010 Nov 7;10(21):2869-74. doi: 10.1039/c0lc00003e. Epub 2010 Sep 30.
7
Microfluidic particle sorting utilizing inertial lift force.利用惯性升力的微流控粒子分选。
Biomed Microdevices. 2011 Feb;13(1):97-105. doi: 10.1007/s10544-010-9474-6.
10
Dynamics of microfluidic droplets.微流控液滴动力学。
Lab Chip. 2010 Aug 21;10(16):2032-45. doi: 10.1039/c001191f. Epub 2010 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验