Suppr超能文献

一个关于半无限气泡通过微血管分支运输的边界元模型。

A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation.

作者信息

Calderon Andres J, Eshpuniyani Brijesh, Fowlkes J Brian, Bull Joseph L

出版信息

Phys Fluids (1994). 2010 Jun;22(6):61902. doi: 10.1063/1.3442829. Epub 2010 Jun 29.

Abstract

Motivated by a developmental gas embolotherapy technique for selective occlusion of blood flow to tumors, we examined the transport of a pressure-driven semi-infinite bubble through a liquid-filled bifurcating channel. Homogeneity of bubble splitting as the bubble passes through a vessel bifurcation affects the degree to which the vascular network near the tumor can be uniformly occluded. The homogeneity of bubble splitting was found to increase with bubble driving pressure and to decrease with increased bifurcation angle. Viscous losses at the bifurcation were observed to affect the bubble speed significantly. The potential for oscillating bubble interfaces to induce flow recirculation and impart high stresses on the vessel endothelium was also observed.

摘要

受一种用于选择性阻断肿瘤血流的发展性气体栓塞治疗技术的启发,我们研究了压力驱动的半无限气泡在充满液体的分叉通道中的传输。气泡通过血管分叉时分裂的均匀性会影响肿瘤附近血管网络被均匀阻塞的程度。研究发现,气泡分裂的均匀性随气泡驱动压力的增加而增加,随分叉角度的增加而降低。观察到分叉处的粘性损失会显著影响气泡速度。还观察到振荡气泡界面诱导流动再循环并在血管内皮上施加高应力的可能性。

相似文献

1
A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation.
Phys Fluids (1994). 2010 Jun;22(6):61902. doi: 10.1063/1.3442829. Epub 2010 Jun 29.
2
Microbubble transport through a bifurcating vessel network with pulsatile flow.
Biomed Microdevices. 2012 Feb;14(1):131-43. doi: 10.1007/s10544-011-9591-x.
3
Small-bubble transport and splitting dynamics in a symmetric bifurcation.
Comput Methods Biomech Biomed Engin. 2017 Aug;20(11):1182-1194. doi: 10.1080/10255842.2017.1340466. Epub 2017 Jun 28.
4
Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
Ultrasonics. 2016 Mar;66:54-64. doi: 10.1016/j.ultras.2015.11.010. Epub 2015 Nov 28.
5
Bubble splitting in bifurcating tubes: a model study of cardiovascular gas emboli transport.
J Appl Physiol (1985). 2005 Aug;99(2):479-87. doi: 10.1152/japplphysiol.00656.2004. Epub 2005 Mar 24.
6
Numerical simulation of bubble transport in a bifurcating microchannel: a preliminary study.
J Biomech Eng. 2012 Aug;134(8):081005. doi: 10.1115/1.4006975.
7
Viscous froth model applied to the motion and topological transformations of two-dimensional bubbles in a channel: three-bubble case.
Proc Math Phys Eng Sci. 2022 Feb;478(2258):20210642. doi: 10.1098/rspa.2021.0642. Epub 2022 Feb 9.
8
Direct numerical simulations of micro-bubble expansion in gas embolotherapy.
J Biomech Eng. 2004 Dec;126(6):745-59. doi: 10.1115/1.1824131.
9
Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field.
Ultrason Sonochem. 2020 Jun;64:104969. doi: 10.1016/j.ultsonch.2020.104969. Epub 2020 Jan 13.
10
Acoustic microbubble dynamics with viscous effects.
Ultrason Sonochem. 2017 May;36:427-436. doi: 10.1016/j.ultsonch.2016.11.032. Epub 2016 Nov 29.

引用本文的文献

4
Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures.
Phys Med Biol. 2014 Jan 20;59(2):379-401. doi: 10.1088/0031-9155/59/2/379. Epub 2013 Dec 19.
5
Phase-change contrast agents for imaging and therapy.
Curr Pharm Des. 2012;18(15):2152-65. doi: 10.2174/138161212800099883.
6
Microbubble transport through a bifurcating vessel network with pulsatile flow.
Biomed Microdevices. 2012 Feb;14(1):131-43. doi: 10.1007/s10544-011-9591-x.

本文引用的文献

1
A Boundary Element Model of Microbubble Sticking and Sliding in the Microcirculation.
Int J Heat Mass Transf. 2008 Nov;51(23-24):5700-5711. doi: 10.1016/j.ijheatmasstransfer.2008.04.050.
2
Laser-induced cavitation based micropump.
Lab Chip. 2008 Oct;8(10):1676-81. doi: 10.1039/b806912c. Epub 2008 Aug 28.
3
The application of microbubbles for targeted drug delivery.
Expert Opin Drug Deliv. 2007 Sep;4(5):475-93. doi: 10.1517/17425247.4.5.475.
4
Controlled cavitation in microfluidic systems.
Phys Rev Lett. 2007 Jun 22;98(25):254501. doi: 10.1103/PhysRevLett.98.254501. Epub 2007 Jun 19.
5
Multiphase microfluidics: from flow characteristics to chemical and materials synthesis.
Lab Chip. 2006 Dec;6(12):1487-503. doi: 10.1039/b609851g. Epub 2006 Sep 27.
6
Microbubble expansion in a flexible tube.
J Biomech Eng. 2006 Aug;128(4):554-63. doi: 10.1115/1.2206200.
7
Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jul;52(7):1101-10. doi: 10.1109/tuffc.2005.1503996.
8
Cardiovascular bubble dynamics.
Crit Rev Biomed Eng. 2005;33(4):299-346. doi: 10.1615/critrevbiomedeng.v33.i4.10.
9
A theoretical model of a molecular-motor-powered pump.
Biomed Microdevices. 2005 Mar;7(1):21-33. doi: 10.1007/s10544-005-6168-6.
10
Direct numerical simulations of micro-bubble expansion in gas embolotherapy.
J Biomech Eng. 2004 Dec;126(6):745-59. doi: 10.1115/1.1824131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验