Suppr超能文献

叠加平稳脉冲序列的统计特性。

Statistical properties of superimposed stationary spike trains.

作者信息

Deger Moritz, Helias Moritz, Boucsein Clemens, Rotter Stefan

机构信息

Bernstein Center Freiburg & Faculty of Biology, Albert-Ludwig University, 79104 Freiburg, Germany.

出版信息

J Comput Neurosci. 2012 Jun;32(3):443-63. doi: 10.1007/s10827-011-0362-8. Epub 2011 Oct 1.

Abstract

The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities-like the count variability, inter-spike interval (ISI) variability and ISI correlations-and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.

摘要

泊松过程是常用于神经元群体活动的一种模型。然而,众所周知,现实的、非泊松脉冲序列的叠加一般并非泊松过程,即便对于大量叠加过程也是如此。在此,我们从大鼠新皮层神经元的细胞内活体记录构建叠加脉冲序列,并将其统计特性与特定点过程模型进行比较。所构建的叠加脉冲序列显示出与泊松模型的显著偏差。我们发现,考虑神经元有效不应期的模型脉冲序列叠加能给出更好的描述。这种类型的一个最简模型是带死区时间的泊松过程(PPD)。对于这个过程及其叠加,我们得到了一些二阶统计量(如计数变异性、峰峰间隔(ISI)变异性和ISI相关性)的解析表达式,并证明了其与活体数据的匹配。我们得出结论,有效不应期是塑造叠加脉冲序列统计特性的关键属性。我们提出了新的高效算法来生成PPD和伽马过程的叠加,可用于在脉冲神经元网络模拟中提供更现实的背景输入。使用这些生成器,我们在模拟中表明,将叠加脉冲序列作为输入的神经元对神经元不应期引起的统计效应高度敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e47/3343236/66f0be33d5e8/10827_2011_362_Fig1_HTML.jpg

相似文献

1
Statistical properties of superimposed stationary spike trains.
J Comput Neurosci. 2012 Jun;32(3):443-63. doi: 10.1007/s10827-011-0362-8. Epub 2011 Oct 1.
3
Dependence of neuronal correlations on filter characteristics and marginal spike train statistics.
Neural Comput. 2008 Sep;20(9):2133-84. doi: 10.1162/neco.2008.05-07-525.
4
Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons.
Neural Comput. 2008 Jul;20(7):1651-705. doi: 10.1162/neco.2008.03-07-497.
5
Generation of correlated spike trains.
Neural Comput. 2009 Jan;21(1):188-215. doi: 10.1162/neco.2008.12-07-657.
6
Superposition of many independent spike trains is generally not a Poisson process.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):022901. doi: 10.1103/PhysRevE.73.022901. Epub 2006 Feb 23.
7
Generation of spike trains with controlled auto- and cross-correlation functions.
Neural Comput. 2009 Jun;21(6):1642-64. doi: 10.1162/neco.2009.08-08-847.
8
What can a neuron learn with spike-timing-dependent plasticity?
Neural Comput. 2005 Nov;17(11):2337-82. doi: 10.1162/0899766054796888.
9
Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.
J Neurosci Methods. 2001 Jan 30;105(1):25-37. doi: 10.1016/s0165-0270(00)00344-7.
10
Attractor reliability reveals deterministic structure in neuronal spike trains.
Neural Comput. 2002 Jul;14(7):1629-50. doi: 10.1162/08997660260028647.

引用本文的文献

1
Solving Max-Cut Problem Using Spiking Boltzmann Machine Based on Neuromorphic Hardware with Phase Change Memory.
Adv Sci (Weinh). 2024 Dec;11(46):e2406433. doi: 10.1002/advs.202406433. Epub 2024 Oct 23.
2
Comparing Surrogates to Evaluate Precisely Timed Higher-Order Spike Correlations.
eNeuro. 2022 Jun 9;9(3). doi: 10.1523/ENEURO.0505-21.2022. Print 2022 May-Jun.
4
Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.
PLoS Comput Biol. 2017 Apr 19;13(4):e1005507. doi: 10.1371/journal.pcbi.1005507. eCollection 2017 Apr.
5
Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.
Front Neurosci. 2016 Nov 2;10:496. doi: 10.3389/fnins.2016.00496. eCollection 2016.
6
Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity.
Front Comput Neurosci. 2014 Sep 18;8:104. doi: 10.3389/fncom.2014.00104. eCollection 2014.
7
How well do mean field theories of spiking quadratic-integrate-and-fire networks work in realistic parameter regimes?
J Comput Neurosci. 2014 Jun;36(3):469-81. doi: 10.1007/s10827-013-0481-5. Epub 2013 Oct 5.
8
A new method to infer higher-order spike correlations from membrane potentials.
J Comput Neurosci. 2013 Oct;35(2):169-86. doi: 10.1007/s10827-013-0446-8. Epub 2013 Mar 10.

本文引用的文献

1
Adaptation reduces variability of the neuronal population code.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):050905. doi: 10.1103/PhysRevE.83.050905. Epub 2011 May 19.
2
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Front Comput Neurosci. 2011 May 25;5:25. doi: 10.3389/fncom.2011.00025. eCollection 2011.
3
Interspike interval distributions of spiking neurons driven by fluctuating inputs.
J Neurophysiol. 2011 Jul;106(1):361-73. doi: 10.1152/jn.00830.2010. Epub 2011 Apr 27.
5
Finite post synaptic potentials cause a fast neuronal response.
Front Neurosci. 2011 Feb 24;5:19. doi: 10.3389/fnins.2011.00019. eCollection 2011.
6
Mechanisms that modulate the transfer of spiking correlations.
Neural Comput. 2011 May;23(5):1261-305. doi: 10.1162/NECO_a_00116. Epub 2011 Feb 7.
7
How noisy adaptation of neurons shapes interspike interval histograms and correlations.
PLoS Comput Biol. 2010 Dec 16;6(12):e1001026. doi: 10.1371/journal.pcbi.1001026.
8
Nonequilibrium dynamics of stochastic point processes with refractoriness.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021129. doi: 10.1103/PhysRevE.82.021129. Epub 2010 Aug 31.
9
Instantaneous non-linear processing by pulse-coupled threshold units.
PLoS Comput Biol. 2010 Sep 9;6(9):e1000929. doi: 10.1371/journal.pcbi.1000929.
10
Equilibrium and Response Properties of the Integrate-and-Fire Neuron in Discrete Time.
Front Comput Neurosci. 2010 Jan 4;3:29. doi: 10.3389/neuro.10.029.2009. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验