Suppr超能文献

适应性降低了神经元群体编码的变异性。

Adaptation reduces variability of the neuronal population code.

作者信息

Farkhooi Farzad, Muller Eilif, Nawrot Martin P

机构信息

Neuroinformatics and Theoretical Neuroscience, Freie Universität Berlin and BCCN-Berlin, Berlin, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):050905. doi: 10.1103/PhysRevE.83.050905. Epub 2011 May 19.

Abstract

Sequences of events in noise-driven excitable systems with slow variables often show serial correlations among their intervals of events. Here, we employ a master equation for generalized non-renewal processes to calculate the interval and count statistics of superimposed processes governed by a slow adaptation variable. For an ensemble of neurons with spike-frequency adaptation, this results in the regularization of the population activity and an enhanced postsynaptic signal decoding. We confirm our theoretical results in a population of cortical neurons recorded in vivo.

摘要

具有慢变量的噪声驱动可兴奋系统中的事件序列,其事件间隔之间常常呈现出序列相关性。在此,我们采用广义非更新过程的主方程,来计算由慢适应变量所支配的叠加过程的间隔和计数统计量。对于具有 spike 频率适应的神经元群体而言,这会导致群体活动的正则化以及增强的突触后信号解码。我们在体内记录的皮质神经元群体中证实了我们的理论结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验