Suppr超能文献

神经元的噪声适应如何塑造尖峰间隔直方图和相关性。

How noisy adaptation of neurons shapes interspike interval histograms and correlations.

机构信息

Max-Planck Institute for the Physics of Complex Systems, Dresden, Germany.

出版信息

PLoS Comput Biol. 2010 Dec 16;6(12):e1001026. doi: 10.1371/journal.pcbi.1001026.

Abstract

Channel noise is the dominant intrinsic noise source of neurons causing variability in the timing of action potentials and interspike intervals (ISI). Slow adaptation currents are observed in many cells and strongly shape response properties of neurons. These currents are mediated by finite populations of ionic channels and may thus carry a substantial noise component. Here we study the effect of such adaptation noise on the ISI statistics of an integrate-and-fire model neuron by means of analytical techniques and extensive numerical simulations. We contrast this stochastic adaptation with the commonly studied case of a fast fluctuating current noise and a deterministic adaptation current (corresponding to an infinite population of adaptation channels). We derive analytical approximations for the ISI density and ISI serial correlation coefficient for both cases. For fast fluctuations and deterministic adaptation, the ISI density is well approximated by an inverse Gaussian (IG) and the ISI correlations are negative. In marked contrast, for stochastic adaptation, the density is more peaked and has a heavier tail than an IG density and the serial correlations are positive. A numerical study of the mixed case where both fast fluctuations and adaptation channel noise are present reveals a smooth transition between the analytically tractable limiting cases. Our conclusions are furthermore supported by numerical simulations of a biophysically more realistic Hodgkin-Huxley type model. Our results could be used to infer the dominant source of noise in neurons from their ISI statistics.

摘要

通道噪声是神经元的主要内在噪声源,导致动作电位和峰间间隔 (ISI) 的时间变化。许多细胞中都观察到缓慢的适应电流,这些电流强烈影响神经元的响应特性。这些电流由有限数量的离子通道介导,因此可能携带大量噪声成分。在这里,我们通过分析技术和广泛的数值模拟研究了这种适应噪声对积分和点火模型神经元 ISI 统计的影响。我们将这种随机适应与通常研究的快速波动电流噪声和确定性适应电流(对应于无限数量的适应通道)进行了对比。我们为这两种情况推导出了 ISI 密度和 ISI 序列相关系数的解析近似。对于快速波动和确定性适应,ISI 密度很好地由逆高斯 (IG) 近似,ISI 相关性为负。相比之下,对于随机适应,密度比 IG 密度更尖峰且尾部更重,序列相关性为正。对同时存在快速波动和适应通道噪声的混合情况的数值研究揭示了在可分析的极限情况之间的平滑过渡。我们的结论还得到了更具生理现实性的 Hodgkin-Huxley 型模型的数值模拟的支持。我们的结果可以用于从神经元的 ISI 统计推断噪声的主要来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0097/3002986/667f897dd457/pcbi.1001026.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验