Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan.
Appl Environ Microbiol. 2011 Dec;77(23):8370-81. doi: 10.1128/AEM.06136-11. Epub 2011 Sep 30.
Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.
我们先前报道过,源自 168 株且总基因组缺失 874kb(20.7%)的新型枯草芽孢杆菌 MGB874 菌株增强了重组酶的生产。然而,基因组减少如何导致酶产量升高尚不清楚。在此,我们报告称,参与精氨酸降解的 rocDEF-rocR 区域的缺失有助于提高 MGB874 菌株的酶产量。rocDEF-rocR 区域的缺失导致谷氨酸代谢发生剧烈变化,从而在保持酶生产率的同时提高了细胞产率。值得注意的是,在有或没有 rocDEF-rocR 区域的情况下,减少基因组菌株的比活酶生产率高于野生型 168 株。MGB874 菌株的高比活酶生产率可能归因于靶基因的表达水平更高,这是由于启动子活性和质粒拷贝数增加所致。因此,通过缺失 rocDEF-rocR 区域提高细胞产率的综合效果和通过缺失另一个基因或基因组减少本身提高特定生产率增强了 MGB874 中重组酶的生产。我们的发现为进一步提高枯草芽孢杆菌减少基因组菌株作为生产异源酶的细胞工厂提供了良好的起点。