Suppr超能文献

改良细胞产量和提高比生产率的综合效应增强了基因组减少的枯草芽孢杆菌 MGB874 菌株中重组酶的生产。

Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874.

机构信息

Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan.

出版信息

Appl Environ Microbiol. 2011 Dec;77(23):8370-81. doi: 10.1128/AEM.06136-11. Epub 2011 Sep 30.

Abstract

Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.

摘要

我们先前报道过,源自 168 株且总基因组缺失 874kb(20.7%)的新型枯草芽孢杆菌 MGB874 菌株增强了重组酶的生产。然而,基因组减少如何导致酶产量升高尚不清楚。在此,我们报告称,参与精氨酸降解的 rocDEF-rocR 区域的缺失有助于提高 MGB874 菌株的酶产量。rocDEF-rocR 区域的缺失导致谷氨酸代谢发生剧烈变化,从而在保持酶生产率的同时提高了细胞产率。值得注意的是,在有或没有 rocDEF-rocR 区域的情况下,减少基因组菌株的比活酶生产率高于野生型 168 株。MGB874 菌株的高比活酶生产率可能归因于靶基因的表达水平更高,这是由于启动子活性和质粒拷贝数增加所致。因此,通过缺失 rocDEF-rocR 区域提高细胞产率的综合效果和通过缺失另一个基因或基因组减少本身提高特定生产率增强了 MGB874 中重组酶的生产。我们的发现为进一步提高枯草芽孢杆菌减少基因组菌株作为生产异源酶的细胞工厂提供了良好的起点。

相似文献

3
Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
J Mol Biol. 1995 Jun 23;249(5):843-56. doi: 10.1006/jmbi.1995.0342.
5
Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis.
DNA Res. 2008 Apr 30;15(2):73-81. doi: 10.1093/dnares/dsn002. Epub 2008 Mar 11.
6
13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
J Biotechnol. 2014 Jun 10;179:42-9. doi: 10.1016/j.jbiotec.2014.03.025. Epub 2014 Mar 22.
7
Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
World J Microbiol Biotechnol. 2018 Sep 10;34(10):145. doi: 10.1007/s11274-018-2531-7.
10
Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis.
Mol Microbiol. 1997 May;24(4):825-37. doi: 10.1046/j.1365-2958.1997.3881754.x.

引用本文的文献

1
Toward Antibody Production in Genome-Minimized Strains.
ACS Synth Biol. 2025 Mar 21;14(3):740-755. doi: 10.1021/acssynbio.4c00688. Epub 2025 Feb 27.
2
Metabolic Profile of the Genome-Reduced Strain IIG-Bs-27-39: An Attractive Chassis for Recombinant Protein Production.
ACS Synth Biol. 2024 Jul 19;13(7):2199-2214. doi: 10.1021/acssynbio.4c00254. Epub 2024 Jul 9.
3
Enhanced protein secretion in reduced genome strains of Streptomyces lividans.
Microb Cell Fact. 2024 Jan 5;23(1):13. doi: 10.1186/s12934-023-02269-x.
4
Let There Be Light: Genome Reduction Enables to Produce Disulfide-Bonded Luciferase.
ACS Synth Biol. 2023 Dec 15;12(12):3656-3668. doi: 10.1021/acssynbio.3c00444. Epub 2023 Nov 27.
6
Engineering the gut microbiota to treat chronic diseases.
Appl Microbiol Biotechnol. 2020 Sep;104(18):7657-7671. doi: 10.1007/s00253-020-10771-0. Epub 2020 Jul 21.
7
Metabolic engineering of S9114 based on whole-genome sequencing for efficient -acetylglucosamine synthesis.
Synth Syst Biotechnol. 2019 Jun 6;4(3):120-129. doi: 10.1016/j.synbio.2019.05.002. eCollection 2019 Sep.
10
Engineering and modification of microbial chassis for systems and synthetic biology.
Synth Syst Biotechnol. 2018 Dec 11;4(1):25-33. doi: 10.1016/j.synbio.2018.12.001. eCollection 2019 Mar.

本文引用的文献

1
From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later.
Microbiology (Reading). 2009 Jun;155(Pt 6):1758-1775. doi: 10.1099/mic.0.027839-0. Epub 2009 Apr 21.
2
Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter.
Microbiology (Reading). 2008 Sep;154(Pt 9):2562-2570. doi: 10.1099/mic.0.2008/016881-0.
3
Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis.
DNA Res. 2008 Apr 30;15(2):73-81. doi: 10.1093/dnares/dsn002. Epub 2008 Mar 11.
5
Control of key metabolic intersections in Bacillus subtilis.
Nat Rev Microbiol. 2007 Dec;5(12):917-27. doi: 10.1038/nrmicro1772.
6
Systematic genome reductions: theoretical and experimental approaches.
Chem Rev. 2007 Aug;107(8):3498-513. doi: 10.1021/cr0683111. Epub 2007 Jul 18.
8
Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp.
Extremophiles. 2007 Jul;11(4):597-603. doi: 10.1007/s00792-007-0074-1. Epub 2007 Apr 12.
9
Sampling for metabolome analysis of microorganisms.
Anal Chem. 2007 May 15;79(10):3843-9. doi: 10.1021/ac0623888. Epub 2007 Apr 6.
10
Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC.
J Mol Biol. 2007 Feb 2;365(5):1298-313. doi: 10.1016/j.jmb.2006.10.100. Epub 2006 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验