Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands.
Institute of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany.
ACS Synth Biol. 2023 Dec 15;12(12):3656-3668. doi: 10.1021/acssynbio.3c00444. Epub 2023 Nov 27.
is a major workhorse for enzyme production in industrially relevant quantities. Compared to mammalian-based expression systems, presents intrinsic advantages, such as high growth rates, high space-time yield, unique protein secretion capabilities, and low maintenance costs. However, shows clear limitations in the production of biopharmaceuticals, especially proteins from eukaryotic origin that contain multiple disulfide bonds. In the present study, we deployed genome minimization, signal peptide screening, and coexpression of recombinant thiol oxidases as strategies to improve the ability of to secrete proteins with multiple disulfide bonds. Different genome-reduced strains served as the chassis for expressing the model protein Luciferase (GLuc), which contains five disulfide bonds. These chassis lack extracellular proteases, prophages, and key sporulation genes. Importantly, compared to the reference strain with a full-size genome, the best-performing genome-minimized strain achieved over 3000-fold increased secretion of active GLuc while growing to lower cell densities. Our results show that high-level GLuc secretion relates, at least in part, to the absence of major extracellular proteases. In addition, we show that the thiol-disulfide oxidoreductase requirements for disulfide bonding have changed upon genome reduction. Altogether, our results highlight genome-engineered strains as promising expression platforms for proteins with multiple disulfide bonds.
是工业相关数量酶生产的主要载体。与基于哺乳动物的表达系统相比, 具有内在优势,例如高增长率、高时空产率、独特的蛋白质分泌能力和低维护成本。然而, 在生产生物制药方面表现出明显的局限性,特别是含有多个二硫键的真核来源的蛋白质。在本研究中,我们部署了基因组最小化、信号肽筛选以及重组硫醇氧化酶的共表达等策略,以提高 分泌具有多个二硫键的蛋白质的能力。不同的基因组简化菌株作为表达模型蛋白荧光素酶 (GLuc) 的底盘,GLuc 含有五个二硫键。这些底盘缺乏细胞外蛋白酶、噬菌体和关键的孢子形成基因。重要的是,与具有完整基因组的参考菌株相比,表现最佳的基因组最小化菌株在生长到较低细胞密度时,可实现活性 GLuc 分泌量增加 3000 多倍。我们的结果表明,高水平的 GLuc 分泌至少部分与缺乏主要细胞外蛋白酶有关。此外,我们还表明,二硫键形成的硫醇-二硫键氧化还原酶的需求在基因组减少后发生了变化。总之,我们的结果强调了经过基因组工程改造的 菌株作为具有多个二硫键的蛋白质的有前途的表达平台。