State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
ACS Appl Mater Interfaces. 2011 Nov;3(11):4299-305. doi: 10.1021/am2009635. Epub 2011 Oct 17.
In this study, the SnO(2) nanostructures and graphene-SnO(2) (G-SnO(2)) composite nanostructures were prepared on n-Si (100) substrates by electrophoretic deposition and magnetron sputtering techniques. The field emission of SnO(2) nanostructures is improved largely by depositing graphene buffer layer, and the field emission of G-SnO(2) composite nanostructures can also further be improved by decreasing sputtering time of Sn nanoparticles to 5 min. The photoluminescence (PL) spectra of the SnO(2) nanostructures revealed multipeaks, which are consistent with previous reports except for a new peak at 422 nm. Intensity of six emission peaks increased after depositing graphene buffer layer. Our results indicated that graphene can also be used as buffer layer acting as interface modification to simultaneity improve the field emission and PL properties of SnO(2) nanostructures effectively.
在这项研究中,SnO(2)纳米结构和石墨烯-SnO(2)(G-SnO(2))复合纳米结构是通过电泳沉积和磁控溅射技术在 n-Si(100)衬底上制备的。通过沉积石墨烯缓冲层,SnO(2)纳米结构的场发射得到了很大的提高,并且通过将 Sn 纳米颗粒的溅射时间减少到 5 分钟,G-SnO(2)复合纳米结构的场发射也可以进一步提高。SnO(2)纳米结构的光致发光(PL)光谱显示出多个峰,与之前的报道一致,除了在 422nm 处出现一个新峰。沉积石墨烯缓冲层后,六个发射峰的强度增加。我们的结果表明,石墨烯也可以用作缓冲层,作为界面改性,同时有效地提高 SnO(2)纳米结构的场发射和 PL 性能。