Suppr超能文献

二元和三元铀酰(VI)-氢氧化物-过氧化物体系中的化学平衡。

Chemical equilibria in the binary and ternary uranyl(VI)-hydroxide-peroxide systems.

机构信息

Dipartimento di Scienze Chimiche, dell'Universitá di Padova, Via Marzolo, 1, 35131 Padova, Italy.

出版信息

Dalton Trans. 2012 Mar 28;41(12):3380-6. doi: 10.1039/c1dt11276g. Epub 2011 Oct 4.

Abstract

The composition and equilibrium constants of the complexes formed in the binary U(VI)-hydroxide and the ternary U(VI)-hydroxide-peroxide systems have been studied using potentiometric and spectrophotometric data at 25 °C in a 0.100 M tetramethylammonium nitrate medium. The data for the binary U(VI) hydroxide complexes were in good agreement with previous studies. In the ternary system two complexes were identified, UO(2)(OH)(O(2)) and (UO(2))(2)(OH)(O(2))(2). Under our experimental conditions the former is predominant over a broad p[H(+)] region from 9.5 to 11.5, while the second is found in significant amounts at p[H(+)] < 10.5. The formation of the ternary peroxide complexes results in a strong increase in the molar absorptivity of the test solutions. The absorption spectrum for (UO(2))(2)(OH)(O(2))(2) was resolved into two components with peaks at 353 and 308 nm with molar absorptivity of 16200 and 20300 M(-1) cm(-1), respectively, suggesting that the electronic transitions are dipole allowed. The molar absorptivity of (UO(2))(OH)(O(2)) at the same wave lengths are significantly lower, but still about one to two orders of magnitude larger than the values for UO(2)(2+)(aq) and the binary uranyl(VI) hydroxide complexes. It is of interest to note that (UO(2))(OH)(O(2)) might be the building block in cluster compounds such as UO(2)(OH)(O(2))(60-) studied by Burns et al. (P. C. Burns, K. A. Kubatko, G. Sigmon, B. J. Fryer, J. E. Gagnon, M. R. Antonio and L. Soderholm, Angew. Chem. 2005, 117, 2173-2177). Speciation calculations using the known equilibrium constants for the U(vi) hydroxide and peroxide complexes show that the latter are important in alkaline solutions even at very low total concentrations of peroxide, suggesting that they may be involved when the uranium minerals Studtite and meta-Studtite are formed by α-radiolysis of water. Radiolysis will be much larger in repositories for spent nuclear fuel where hydrogen peroxide might contribute both to the corrosion of the fuel and to transport of uranium in a ground water system.

摘要

在 0.100 M 四甲基硝酸铵介质中,25°C 下,通过电位和分光光度数据研究了二元 U(VI)-氢氧化物和三元 U(VI)-氢氧化物-过氧化物系统中形成的配合物的组成和平衡常数。二元 U(VI)氢氧化物配合物的数据与先前的研究结果吻合良好。在三元体系中,鉴定出两种配合物,UO(2)(OH)(O(2))(UO(2))(2)(OH)(O(2))(2)。在我们的实验条件下,前者在从 9.5 到 11.5 的宽 pH 值范围内占主导地位,而后者在 pH 值<10.5 时以显著量存在。三元过氧化物配合物的形成导致测试溶液的摩尔吸光率强烈增加。(UO(2))(2)(OH)(O(2))(2)的吸收光谱分解为两个具有 353nm 和 308nm 峰的组分,摩尔吸光率分别为 16200 和 20300 M(-1)cm(-1),表明电子跃迁是偶极允许的。同一波长下(UO(2))(OH)(O(2))的摩尔吸光率明显较低,但仍比 UO(2)(2+)(aq)和二元铀酰(VI)氢氧化物配合物的值高一个到两个数量级。值得注意的是,(UO(2))(OH)(O(2))可能是 Burns 等人研究的UO(2)(OH)(O(2))(60-)等簇化合物的结构单元(P. C. Burns、K. A. Kubatko、G. Sigmon、B. J. Fryer、J. E. Gagnon、M. R. Antonio 和 L. Soderholm,Angew. Chem. 2005, 117, 2173-2177)。使用已知的 U(vi)氢氧化物和过氧化物配合物的平衡常数进行的形态计算表明,即使在过氧化物总浓度非常低的情况下,后者在碱性溶液中也很重要,这表明当铀矿物 Studtite 和介 Studtite 通过水的α辐射分解形成时,它们可能会参与其中。在乏核燃料储存库中,辐射分解会更大,过氧化氢可能会同时促进燃料的腐蚀和地下水系统中铀的迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验