Dipartimento di Scienze Chimiche dell'Universitá di Padova, Via Marzolo 1, 35131 Padova, Italy.
Dalton Trans. 2013 Jul 28;42(28):10129-37. doi: 10.1039/c3dt50837d.
The focus of this study is on the relationship between uranyl(VI) poly-peroxo clusters in the solid state and their possible precursors in solution. For this purpose, the complex formation in the ternary U(VI)-H2O2-F(-) system has been studied by potentiometric titrations, measuring p[H(+)] and p[F(-)], revealing that significant amounts of ternary uranyl(VI)-peroxide-fluoride complexes are formed. Based on the analysis of these data we find that there are two models consistent with structure data and previous speciation in the uranyl(VI)-peroxide-carbonate system (Dalton. Trans., 2012, 41, 11635-11641). One model contains ternary complexes (UO2)4(O2)4F(-) and (UO2)4(O2)4F2(2-) and the other (UO2)4(O2)4F(-) and (UO2)5(O2)5F3(3-); we have chosen the second model as the one most consistent with available information. We suggest that (UO2)4(O2)4F(-) is a building block in the U-24 cluster, [Na6(OH2)8]@[UO2(O2)F]24(18-) identified in a single-crystal X-ray diffraction study of the solid phase that slowly precipitates from the slightly acidic test solutions. At p[H(+)] ≈ 9.5, a new solid phase is formed that contains the cluster [Na6(OH2)8]@[UO2(O2)OH]24(18-), also identified from an X-ray structure. Both structures contain η(2)-η(2) bridging peroxide and η(2) bridging fluoride or hydroxide ions, respectively. As fluoride bridges are unknown in solution coordination chemistry, it is unlikely that the U-24 fluoride cluster is formed in solution. We suggest that both the solid state fluoride and hydroxide clusters are formed in the crystallization from smaller precursors identified in solution. The study illustrates the importance of accurate control of the solution chemistry when preparing poly-peroxo-metallate clusters and also that the mechanism of their formation is still an open field of research.
本研究的重点是固态下铀酰(VI)多过氧簇及其在溶液中可能的前体之间的关系。为此,通过电位滴定法研究了三元 U(VI)-H2O2-F(-)体系中的络合作用,测量了 p[H(+)] 和 p[F(-)],结果表明形成了大量的三元铀酰(VI)-过氧化物-氟化物络合物。基于对这些数据的分析,我们发现有两个模型与结构数据和先前在铀酰(VI)-过氧化物-碳酸盐体系中的形态一致(Dalton. Trans.,2012,41,11635-11641)。一个模型包含三元配合物 (UO2)4(O2)4F(-) 和 (UO2)4(O2)4F2(2-),另一个模型包含 (UO2)4(O2)4F(-) 和 (UO2)5(O2)5F3(3-);我们选择了与现有信息最一致的第二个模型。我们认为 (UO2)4(O2)4F(-) 是在固态中缓慢沉淀的略微酸性测试溶液中通过单晶 X 射线衍射研究鉴定的 U-24 簇 [Na6(OH2)8]@[UO2(O2)F]24(18-) 的结构单元。在 p[H(+)] ≈ 9.5 时,形成了一种新的固相,其中包含簇 [Na6(OH2)8]@[UO2(O2)OH]24(18-),也通过 X 射线结构鉴定。这两种结构都包含 η(2)-η(2)桥联过氧化物和 η(2)桥联氟化物或氢氧化物离子,分别。由于氟桥在溶液配位化学中是未知的,因此在溶液中形成 U-24 氟化物簇的可能性不大。我们认为,无论是固态氟化物还是氢氧化物簇,都是在溶液中鉴定出的较小前体的结晶过程中形成的。该研究说明了在制备多过氧金属配合物簇时准确控制溶液化学的重要性,并且它们的形成机制仍然是一个开放的研究领域。