Xu Xuehua, Jin Tian
Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
J Vis Exp. 2011 Sep 20(55):3128. doi: 10.3791/3128.
Many eukaryotic cells can detect gradients of chemical signals in their environments and migrate accordingly (1). This guided cell migration is referred as chemotaxis, which is essential for various cells to carry out their functions such as trafficking of immune cells and patterning of neuronal cells (2, 3). A large family of G-protein coupled receptors (GPCRs) detects variable small peptides, known as chemokines, to direct cell migration in vivo (4). The final goal of chemotaxis research is to understand how a GPCR machinery senses chemokine gradients and controls signaling events leading to chemotaxis. To this end, we use imaging techniques to monitor, in real time, spatiotemporal concentrations of chemoattractants, cell movement in a gradient of chemoattractant, GPCR mediated activation of heterotrimeric G-protein, and intracellular signaling events involved in chemotaxis of eukaryotic cells (5-8). The simple eukaryotic organism, Dictyostelium discoideum, displays chemotaxic behaviors that are similar to those of leukocytes, and D. discoideum is a key model system for studying eukaryotic chemotaxis. As free-living amoebae, D. discoideum cells divide in rich medium. Upon starvation, cells enter a developmental program in which they aggregate through cAMP-mediated chemotaxis to form multicullular structures. Many components involved in chemotaxis to cAMP have been identified in D. discoideum. The binding of cAMP to a GPCR (cAR1) induces dissociation of heterotrimeric G-proteins into Gγ and Gβγ subunits (7, 9, 10). Gβγ subunits activate Ras, which in turn activates PI3K, converting PIP(2;) into PIP(3;) on the cell membrane (11-13). PIP(3;) serve as binding sites for proteins with pleckstrin Homology (PH) domains, thus recruiting these proteins to the membrane (14, 15). Activation of cAR1 receptors also controls the membrane associations of PTEN, which dephosphorylates PIP(3;) to PIP(2;)(16, 17). The molecular mechanisms are evolutionarily conserved in chemokine GPCR-mediated chemotaxis of human cells such as neutrophils (18). We present following methods for studying chemotaxis of D. discoideum cells. 1. Preparation of chemotactic component cells. 2. Imaging chemotaxis of cells in a cAMP gradient. 3. Monitoring a GPCR induced activation of heterotrimeric G-protein in single live cells. 4. Imaging chemoattractant-triggered dynamic PIP(3;) responses in single live cells in real time. Our developed imaging methods can be applied to study chemotaxis of human leukocytes.
许多真核细胞能够检测其周围环境中的化学信号梯度,并据此迁移(1)。这种有导向的细胞迁移被称为趋化作用,对于各种细胞执行其功能至关重要,比如免疫细胞的运输和神经元细胞的模式形成(2, 3)。一大类G蛋白偶联受体(GPCRs)可检测称为趋化因子的可变小肽,以在体内引导细胞迁移(4)。趋化作用研究的最终目标是了解GPCR机制如何感知趋化因子梯度并控制导致趋化作用的信号转导事件。为此,我们使用成像技术实时监测趋化因子的时空浓度、趋化因子梯度中细胞的运动、GPCR介导的异源三聚体G蛋白的激活以及真核细胞趋化作用中涉及的细胞内信号转导事件(5 - 8)。简单的真核生物盘基网柄菌表现出与白细胞类似的趋化行为,盘基网柄菌是研究真核细胞趋化作用的关键模型系统。作为自由生活的变形虫,盘基网柄菌细胞在丰富培养基中分裂。饥饿时,细胞进入一个发育程序,通过cAMP介导的趋化作用聚集形成多细胞结构。在盘基网柄菌中已经鉴定出许多参与对cAMP趋化作用的成分。cAMP与GPCR(cAR1)结合会诱导异源三聚体G蛋白解离成Gγ和Gβγ亚基(7, 9, 10)。Gβγ亚基激活Ras,Ras进而激活PI3K,将细胞膜上的PIP(2;)转化为PIP(3;)(11 - 13)。PIP(3;)作为具有pleckstrin同源(PH)结构域的蛋白质的结合位点,从而将这些蛋白质招募到细胞膜上(14, 15)。cAR1受体的激活还控制PTEN的膜结合,PTEN将PIP(3;)去磷酸化为PIP(2;)(16, 17)。这些分子机制在人类细胞如中性粒细胞的趋化因子GPCR介导的趋化作用中具有进化保守性(18)。我们介绍以下研究盘基网柄菌细胞趋化作用的方法。1. 趋化成分细胞的制备。2. 在cAMP梯度中对细胞趋化作用进行成像。3. 监测单个活细胞中GPCR诱导的异源三聚体G蛋白的激活。4. 实时成像趋化因子触发的单个活细胞中动态PIP(3;)反应。我们开发的成像方法可用于研究人类白细胞的趋化作用。