Service neuro-diagnostique et neuro-interventionnel DISIM, University Hospitals of Geneva, Geneva, Switzerland.
J Alzheimers Dis. 2011;26 Suppl 3:389-94. doi: 10.3233/JAD-2011-0014.
The majority of advanced neuroimaging studies implement group level analyses contrasting a group of patients versus a group of controls, or two groups of patients. Such analyses may identify for example changes in grey matter in specific regions associated with a given disease. Although such group investigations provided key contributions to the understanding of the pathological process surrounding a wide range of diseases, they are of limited utility at an individual level. Recently, there is a trend towards individual classification analyses, representing a fundamental shift of the research paradigm. In contrast to group comparisons, these latter studies do not provide insights on vulnerable brain areas but may allow for an early (and ideally preclinical) identification of at risk individuals in routine clinical setting. One currently very popular method in this domain are support vector machines (SVM), yet this method is only one of many available methods in the field of individual classification analyses. The current manuscript reviews the fundamental properties and features of such individual level classification analyses in neurodegenerative diseases.
大多数高级神经影像学研究采用组水平分析,将一组患者与一组对照组或两组患者进行对比。例如,这种分析可以确定与特定疾病相关的特定区域的灰质变化。尽管这种组研究为理解广泛疾病周围的病理过程提供了关键贡献,但它们在个体水平上的应用有限。最近,个体分类分析的趋势正在出现,这代表了研究范式的根本转变。与组比较相比,这些研究并不能深入了解易受影响的大脑区域,但可以在常规临床环境中早期(理想情况下是临床前)识别高危个体。目前在该领域非常流行的方法是支持向量机 (SVM),但这种方法仅是个体分类分析领域众多可用方法之一。当前的手稿回顾了神经退行性疾病中个体水平分类分析的基本性质和特征。