Suppr超能文献

大肠杆菌中尿嘧啶-DNA 糖基化酶从分布损伤处转移的机制。

Mechanism of translocation of uracil-DNA glycosylase from Escherichia coli between distributed lesions.

机构信息

SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia.

出版信息

Biochem Biophys Res Commun. 2011 Oct 22;414(2):425-30. doi: 10.1016/j.bbrc.2011.09.106. Epub 2011 Sep 28.

Abstract

Uracil-DNA glycosylase (Ung) is a DNA repair enzyme that excises uracil bases from DNA, where they appear through deamination of cytosine or incorporation from a cellular dUTP pool. DNA repair enzymes often use one-dimensional diffusion along DNA to accelerate target search; however, this mechanism remains poorly investigated mechanistically. We used oligonucleotide substrates containing two uracil residues in defined positions to characterize one-dimensional search of DNA by Escherichia coli Ung. Mg(2+) ions suppressed the search in double-stranded DNA to a higher extent than K(+) likely due to tight binding of Mg(2+) to DNA phosphates. Ung was able to efficiently overcome short single-stranded gaps within double-stranded DNA. Varying the distance between the lesions and fitting the data to a theoretical model of DNA random walk, we estimated the characteristic one-dimensional search distance of ~100 nucleotides and translocation rate constant of ~2×10(6) s(-1).

摘要

尿嘧啶-DNA 糖基化酶(Ung)是一种 DNA 修复酶,可从 DNA 中切除尿嘧啶碱基,这些碱基是通过胞嘧啶脱氨或细胞内 dUTP 池掺入而产生的。DNA 修复酶通常使用沿 DNA 的一维扩散来加速靶标搜索;然而,这种机制的机制仍未得到很好的研究。我们使用含有两个尿嘧啶残基的特定位置的寡核苷酸底物来表征大肠杆菌 Ung 的 DNA 一维搜索。Mg(2+) 离子比 K(+) 更能抑制双链 DNA 中的搜索,这可能是由于 Mg(2+)与 DNA 磷酸基团的紧密结合。Ung 能够有效地克服双链 DNA 内的短单链缺口。通过改变损伤之间的距离并将数据拟合到 DNA 随机游动的理论模型,我们估计了100 个核苷酸的特征一维搜索距离和2×10(6) s(-1)的转运速率常数。

相似文献

1
Mechanism of translocation of uracil-DNA glycosylase from Escherichia coli between distributed lesions.
Biochem Biophys Res Commun. 2011 Oct 22;414(2):425-30. doi: 10.1016/j.bbrc.2011.09.106. Epub 2011 Sep 28.
2
Enzymatic capture of an extrahelical thymine in the search for uracil in DNA.
Nature. 2007 Sep 27;449(7161):433-7. doi: 10.1038/nature06131. Epub 2007 Aug 19.
3
Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition.
Mutat Res. 2010 Mar 1;685(1-2):11-20. doi: 10.1016/j.mrfmmm.2009.10.017. Epub 2009 Nov 10.
5
Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli.
J Bacteriol. 1982 Aug;151(2):750-5. doi: 10.1128/jb.151.2.750-755.1982.
7
A mutant of uracil DNA glycosylase that distinguishes between cytosine and 5-methylcytosine.
PLoS One. 2014 Apr 16;9(4):e95394. doi: 10.1371/journal.pone.0095394. eCollection 2014.
8
9
Correlated cleavage of single- and double-stranded substrates by uracil-DNA glycosylase.
FEBS Lett. 2008 Feb 6;582(3):410-4. doi: 10.1016/j.febslet.2008.01.002. Epub 2008 Jan 15.

引用本文的文献

2
Distinct Mechanisms of Target Search by Endonuclease VIII-like DNA Glycosylases.
Cells. 2022 Oct 11;11(20):3192. doi: 10.3390/cells11203192.
4
Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?
Free Radic Biol Med. 2017 Jun;107:170-178. doi: 10.1016/j.freeradbiomed.2016.11.024. Epub 2016 Nov 16.
5
Visualizing the Search for Radiation-damaged DNA Bases in Real Time.
Radiat Phys Chem Oxf Engl 1993. 2016 Nov;128:126-133. doi: 10.1016/j.radphyschem.2016.05.011. Epub 2016 May 13.
6
Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes.
Protein Sci. 2014 Dec;23(12):1667-85. doi: 10.1002/pro.2554. Epub 2014 Oct 25.
7
Insights into the glycosylase search for damage from single-molecule fluorescence microscopy.
DNA Repair (Amst). 2014 Aug;20:23-31. doi: 10.1016/j.dnarep.2014.01.007. Epub 2014 Feb 20.

本文引用的文献

1
Dancing on DNA: kinetic aspects of search processes on DNA.
Chemphyschem. 2011 Jun 6;12(8):1481-9. doi: 10.1002/cphc.201100112. Epub 2011 May 10.
2
Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein.
ACS Chem Biol. 2010 Apr 16;5(4):427-36. doi: 10.1021/cb1000185.
3
Diffusion of the restriction nuclease EcoRI along DNA.
J Mol Biol. 2010 Jan 15;395(2):408-16. doi: 10.1016/j.jmb.2009.10.049. Epub 2009 Oct 27.
4
Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
Biochemistry. 2008 Nov 4;47(44):11434-45. doi: 10.1021/bi801046y. Epub 2008 Oct 8.
5
Correlated cleavage of damaged DNA by bacterial and human 8-oxoguanine-DNA glycosylases.
Biochemistry. 2008 Aug 26;47(34):8970-6. doi: 10.1021/bi800569e. Epub 2008 Aug 2.
6
Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10791-6. doi: 10.1073/pnas.0801612105. Epub 2008 Jul 31.
7
Ionic strength and magnesium affect the specificity of Escherichia coli and human 8-oxoguanine-DNA glycosylases.
FEBS J. 2008 Aug;275(15):3747-60. doi: 10.1111/j.1742-4658.2008.06521.x. Epub 2008 Jun 28.
8
Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.
Biochemistry. 2008 May 13;47(19):5336-53. doi: 10.1021/bi702363u. Epub 2008 Apr 19.
9
Correlated cleavage of single- and double-stranded substrates by uracil-DNA glycosylase.
FEBS Lett. 2008 Feb 6;582(3):410-4. doi: 10.1016/j.febslet.2008.01.002. Epub 2008 Jan 15.
10
Enzymatic capture of an extrahelical thymine in the search for uracil in DNA.
Nature. 2007 Sep 27;449(7161):433-7. doi: 10.1038/nature06131. Epub 2007 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验