Suppr超能文献

基于与主体无关的声学-发音反转的发音特征的自动语音识别。

Automatic speech recognition using articulatory features from subject-independent acoustic-to-articulatory inversion.

机构信息

Signal Analysis and Interpretation Laboratory, Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA.

出版信息

J Acoust Soc Am. 2011 Oct;130(4):EL251-7. doi: 10.1121/1.3634122.

Abstract

An automatic speech recognition approach is presented which uses articulatory features estimated by a subject-independent acoustic-to-articulatory inversion. The inversion allows estimation of articulatory features from any talker's speech acoustics using only an exemplary subject's articulatory-to-acoustic map. Results are reported on a broad class phonetic classification experiment on speech from English talkers using data from three distinct English talkers as exemplars for inversion. Results indicate that the inclusion of the articulatory information improves classification accuracy but the improvement is more significant when the speaking style of the exemplar and the talker are matched compared to when they are mismatched.

摘要

本文提出了一种自动语音识别方法,该方法使用由与说话人无关的声学到发音的反转估计的发音特征。该反转允许仅使用示例主体的发音到声学图从任何说话者的语音声学中估计发音特征。使用来自三个不同英语说话者的示例数据,在英语说话者的语音的广泛类语音分类实验中报告了结果。结果表明,包含发音信息可以提高分类准确性,但当示例和说话者的说话风格匹配时,与不匹配时相比,改进更为显著。

相似文献

引用本文的文献

1
Articulation constrained learning with application to speech emotion recognition.应用于语音情感识别的关节约束学习
EURASIP J Audio Speech Music Process. 2019;2019(1). doi: 10.1186/s13636-019-0157-9. Epub 2019 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验