Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway.
J Chem Phys. 2011 Sep 28;135(12):124516. doi: 10.1063/1.3640010.
In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature gradient, while still being far away from any chemical instability. This study extends the analysis in our first paper on the subject [J. M. Ortiz de Zárate, J. V. Sengers, D. Bedeaux, and S. Kjelstrup, J. Chem. Phys. 127, 034501 (2007)], where we considered fluctuations in a non-isothermal reaction-diffusion system but still close to equilibrium. The present extension is based on mesoscopic non-equilibrium thermodynamics that we recently developed [D. Bedeaux, I. Pagonabarraga, J. M. Ortiz de Zárate, J. V. Sengers, and S. Kjelstrup, Phys. Chem. Chem. Phys. 12, 12780 (2010)] to derive the law of mass action and fluctuation-dissipation theorems for the random contributions to the dissipative fluxes in the nonlinear macroscopic description. Just as for non-equilibrium fluctuations close to equilibrium, we again find an enhancement of the intensity of the concentration fluctuations in the presence of a temperature gradient. The non-equilibrium concentration fluctuations are in both cases spatially long ranged, with an intensity depending on the wave number q. The intensity exhibits a crossover from a ∝q(-4) to a ∝q(-2) behavior depending on whether the corresponding wavelength is smaller or larger than the penetration depth of the reacting mixture. This opens a possibility to distinguish between diffusion- or activation-controlled regimes of the reaction experimentally. The important conclusion overall is that non-equilibrium fluctuations in non-isothermal reaction-diffusion systems are always long ranged.
在本文中,我们考虑了一个简单的反应扩散系统,即两种物质之间存在缔合-解缔反应的二元流体混合物。当这种混合物由于温度梯度的存在而被驱离平衡时,我们研究了其在流体动力学时空尺度上的涨落,同时仍然远离任何化学不稳定性。这项研究扩展了我们之前关于该主题的第一篇论文[J. M.Ortiz de Zárate、J. V. Sengers、D. Bedeaux 和 S. Kjelstrup,J. Chem. Phys. 127, 034501(2007)]中的分析,其中我们考虑了非等温反应扩散系统中的涨落,但仍接近平衡。目前的扩展基于我们最近开发的介观非平衡热力学[D. Bedeaux、I. Pagonabarraga、J. M.Ortiz de Zárate、J. V. Sengers 和 S. Kjelstrup,Phys. Chem. Chem. Phys. 12, 12780(2010)],该理论用于推导热力学定律和随机贡献对非线性宏观描述中耗散通量的涨落-耗散定理。就像在接近平衡的非平衡涨落一样,我们再次发现,在存在温度梯度的情况下,浓度涨落的强度增强。在这两种情况下,非平衡浓度涨落的空间范围都很长,其强度取决于波数 q。强度表现出从 ∝q(-4)到 ∝q(-2)的转变,具体取决于相应的波长是否小于或大于反应混合物的穿透深度。这为实验上区分扩散或激活控制的反应提供了可能。总体上的重要结论是,非等温反应扩散系统中的非平衡涨落总是长程的。