Suppr超能文献

基于相位同步和随机矩阵的多通道时间序列分析方法及其在癫痫中的应用。

A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy.

机构信息

Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.

出版信息

Chaos. 2011 Sep;21(3):033108. doi: 10.1063/1.3615642.

Abstract

We present a general method to analyze multichannel time series that are becoming increasingly common in many areas of science and engineering. Of particular interest is the degree of synchrony among various channels, motivated by the recognition that characterization of synchrony in a system consisting of many interacting components can provide insights into its fundamental dynamics. Often such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely complete synchronization in which the dynamical variables from individual components approach each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-synchronization times from all available pairs of channels and then to construct a matrix. Due to nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization for which enhanced local synchrony is similarly presumed.

摘要

我们提出了一种分析多通道时间序列的通用方法,这种方法在许多科学和工程领域越来越常见。特别感兴趣的是各个通道之间的同步程度,这是因为认识到对由许多相互作用的组件组成的系统中的同步进行描述可以深入了解其基本动力学。通常,这样的系统是复杂的、高维的、非线性的、非平稳的和嘈杂的,不太可能出现完全同步,即各个组件的动态变量彼此渐近接近。尽管如此,仍可以预期一种持续有限时间的较弱类型的同步,即相位同步。我们的想法是计算所有可用通道对之间的平均相位同步时间,然后构建一个矩阵。由于非线性和随机性,该矩阵实际上是随机的。此外,由于矩阵的对角元素可以任意大,因此矩阵可能是奇异的。为了克服这个困难,我们开发了一种基于随机矩阵的准则,用于正确选择对角矩阵元素。监测特征值和行列式提供了一种评估同步变化的强大方法。该方法使用非平稳嘈杂动态系统的原型进行了测试,还使用了假定皮质丘脑同步增强的癫痫发作期间的头皮脑电图(scalp)数据,以及假定局部同步增强的继发性全身性部分发作的颅内脑电图(intracranial)数据进行了测试。

相似文献

2
Characterization of synchrony with applications to epileptic brain signals.癫痫脑信号同步性的特征及其应用
Phys Rev Lett. 2007 Mar 9;98(10):108102. doi: 10.1103/PhysRevLett.98.108102. Epub 2007 Mar 6.
6
Identifying phase synchronization clusters in spatially extended dynamical systems.识别空间扩展动力系统中的相位同步簇。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051909. doi: 10.1103/PhysRevE.74.051909. Epub 2006 Nov 14.
8
Estimating phase synchronization in dynamical systems using cellular nonlinear networks.使用细胞非线性网络估计动态系统中的相位同步。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061926. doi: 10.1103/PhysRevE.71.061926. Epub 2005 Jun 29.

本文引用的文献

2
Characterization of synchrony with applications to epileptic brain signals.癫痫脑信号同步性的特征及其应用
Phys Rev Lett. 2007 Mar 9;98(10):108102. doi: 10.1103/PhysRevLett.98.108102. Epub 2007 Mar 6.
3
Identifying phase synchronization clusters in spatially extended dynamical systems.识别空间扩展动力系统中的相位同步簇。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051909. doi: 10.1103/PhysRevE.74.051909. Epub 2006 Nov 14.
4
Localized short-range correlations in the spectrum of the equal-time correlation matrix.等时关联矩阵谱中的局域短程关联
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 1):041119. doi: 10.1103/PhysRevE.74.041119. Epub 2006 Oct 24.
6
Seizure prediction: the long and winding road.癫痫发作预测:漫长而曲折的道路。
Brain. 2007 Feb;130(Pt 2):314-33. doi: 10.1093/brain/awl241. Epub 2006 Sep 28.
7
Detecting and characterizing phase synchronization in nonstationary dynamical systems.检测和表征非平稳动力系统中的相位同步
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 2):026214. doi: 10.1103/PhysRevE.73.026214. Epub 2006 Feb 17.
9
Detection and characterization of changes of the correlation structure in multivariate time series.多元时间序列中相关结构变化的检测与表征
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046116. doi: 10.1103/PhysRevE.71.046116. Epub 2005 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验