Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
Chaos. 2011 Sep;21(3):033108. doi: 10.1063/1.3615642.
We present a general method to analyze multichannel time series that are becoming increasingly common in many areas of science and engineering. Of particular interest is the degree of synchrony among various channels, motivated by the recognition that characterization of synchrony in a system consisting of many interacting components can provide insights into its fundamental dynamics. Often such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely complete synchronization in which the dynamical variables from individual components approach each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-synchronization times from all available pairs of channels and then to construct a matrix. Due to nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization for which enhanced local synchrony is similarly presumed.
我们提出了一种分析多通道时间序列的通用方法,这种方法在许多科学和工程领域越来越常见。特别感兴趣的是各个通道之间的同步程度,这是因为认识到对由许多相互作用的组件组成的系统中的同步进行描述可以深入了解其基本动力学。通常,这样的系统是复杂的、高维的、非线性的、非平稳的和嘈杂的,不太可能出现完全同步,即各个组件的动态变量彼此渐近接近。尽管如此,仍可以预期一种持续有限时间的较弱类型的同步,即相位同步。我们的想法是计算所有可用通道对之间的平均相位同步时间,然后构建一个矩阵。由于非线性和随机性,该矩阵实际上是随机的。此外,由于矩阵的对角元素可以任意大,因此矩阵可能是奇异的。为了克服这个困难,我们开发了一种基于随机矩阵的准则,用于正确选择对角矩阵元素。监测特征值和行列式提供了一种评估同步变化的强大方法。该方法使用非平稳嘈杂动态系统的原型进行了测试,还使用了假定皮质丘脑同步增强的癫痫发作期间的头皮脑电图(scalp)数据,以及假定局部同步增强的继发性全身性部分发作的颅内脑电图(intracranial)数据进行了测试。