Lai Ying-Cheng, Frei Mark G, Osorio Ivan, Huang Liang
Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA.
Phys Rev Lett. 2007 Mar 9;98(10):108102. doi: 10.1103/PhysRevLett.98.108102. Epub 2007 Mar 6.
Measurement of synchrony in networks of complex or high-dimensional, nonstationary, and noisy systems such as the mammalian brain is technically difficult. We present a general method to analyze synchrony from multichannel time series. The idea is to calculate the phase-synchronization times and to construct a matrix. We develop a random-matrix-based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides an effective way to assess changes in synchrony. The method is tested using a prototype nonstationary dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization.
在诸如哺乳动物大脑这样复杂、高维、非平稳且有噪声的系统网络中测量同步性在技术上具有挑战性。我们提出了一种从多通道时间序列分析同步性的通用方法。其思路是计算相位同步时间并构建一个矩阵。我们开发了一种基于随机矩阵的准则来正确选择对角矩阵元素。监测特征值和行列式提供了一种评估同步性变化的有效方法。该方法通过一个原型非平稳动力系统、假定存在增强同步性的失神发作的脑电图(头皮)数据以及患有继发性全身性发作的部分性发作患者的皮质脑电图(颅内)数据进行了测试。