Suppr超能文献

丝状伪足:一种稳定的结构,其延伸和持续存在的重复循环高度受肌动蛋白交联蛋白 fascin 的调节。

The filopodium: a stable structure with highly regulated repetitive cycles of elongation and persistence depending on the actin cross-linker fascin.

机构信息

Institute of Complex Systems, Biomechanics, Forschungszentrum Jülich, Jülich, Germany.

出版信息

Cell Adh Migr. 2011 Sep-Oct;5(5):431-8. doi: 10.4161/cam.5.5.17400.

Abstract

The ability of mammalian cells to adhere and to migrate is an essential prerequisite to form higher organisms. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. Latest research revealed that filopodia are important not only for sensing the substrate but for all of the aforementioned highly regulated processes. However, the exact regulatory mechanisms are still barely understood. Here, we demonstrate that filopodia of human keratinocytes exhibit distinct cycles of repetitive elongation and persistence. A single filopodium thereby is able to initiate the formation of several stable adhesions. Every single filopodial cycle is characterized by an elongation phase, followed by a stabilization time and in many cases a persistence phase. The whole process is strongly connected to the velocity of the lamellipodial leading edge, characterized by a similar phase behavior with a slight time shift compared to filopodia and a different velocity. Most importantly, re-growth of existing filopodia is induced at a sharply defined distance between the filopodial tip and the lamellipodial leading edge. On the molecular level this re-growth is preceded by a strong filopodial reduction of the actin bundling protein fascin. This reduction is achieved by a switch to actin polymerization without fascin incorporation at the filopodial tip and therefore subsequent out-transport of the cross-linker by actin retrograde flow.

摘要

哺乳动物细胞的黏附和迁移能力是形成高等生物的必要前提。早期的迁移事件包括基底感知、黏附形成、肌动蛋白束组装和力的产生。最新的研究表明,丝状伪足不仅对于基底感知很重要,对于所有上述高度调控的过程也很重要。然而,确切的调节机制仍知之甚少。在这里,我们证明了人类角质形成细胞的丝状伪足表现出明显的重复伸长和持续的循环。一个单独的丝状伪足因此能够启动几个稳定的黏附的形成。每个丝状伪足周期的特征是伸长阶段,随后是稳定时间,在许多情况下还有持续时间。整个过程与片状伪足前缘的速度强烈相关,其具有相似的相行为,与丝状伪足相比略有时间延迟,并且速度不同。最重要的是,现有的丝状伪足的再生长是在丝状伪足尖端和片状伪足前缘之间的一个明确的距离处诱导的。在分子水平上,这一再生长以前是丝状伪足的肌动蛋白束结合蛋白 fascin 的强烈减少为前提的。这种减少是通过在丝状伪足尖端处不包含 fascin 的肌动蛋白聚合来实现的,因此随后交联剂通过肌动蛋白逆行流向外运输。

相似文献

6
Role of fascin in filopodial protrusion.丝状肌动蛋白在丝状伪足突出中的作用。
J Cell Biol. 2006 Sep 11;174(6):863-75. doi: 10.1083/jcb.200603013.
9
Molecular mechanism of fascin function in filopodial formation.细丝蛋白在丝状伪足形成中的分子机制。
J Biol Chem. 2013 Jan 4;288(1):274-84. doi: 10.1074/jbc.M112.427971. Epub 2012 Nov 26.

引用本文的文献

4
Protrusion growth driven by myosin-generated force.肌球蛋白产生的力驱动突出生长。
Dev Cell. 2023 Jan 9;58(1):18-33.e6. doi: 10.1016/j.devcel.2022.12.001.
5
Modeling Brain Vasculature Immune Interactions In Vitro.体外模拟脑脉管系统免疫相互作用。
Cold Spring Harb Perspect Med. 2023 Sep 1;13(9):a041185. doi: 10.1101/cshperspect.a041185.
8
The Taspase1/Myosin1f-axis regulates filopodia dynamics.Taspase1/肌球蛋白1f轴调节丝状伪足动力学。
iScience. 2022 May 5;25(6):104355. doi: 10.1016/j.isci.2022.104355. eCollection 2022 Jun 17.
9
Cellular Contact Guidance Emerges from Gap Avoidance.细胞接触导向源于间隙回避。
Cell Rep Phys Sci. 2020 May 20;1(5):100055. doi: 10.1016/j.xcrp.2020.100055.

本文引用的文献

3
The role of formins in filopodia formation.formin蛋白在丝状伪足形成中的作用。
Biochim Biophys Acta. 2010 Feb;1803(2):191-200. doi: 10.1016/j.bbamcr.2008.12.018. Epub 2009 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验