Suppr超能文献

Formin 2调节生长锥中丝状伪足尖端黏附的稳定性,并影响体内神经元的生长和路径寻找。

Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo.

作者信息

Sahasrabudhe Abhishek, Ghate Ketakee, Mutalik Sampada, Jacob Ajesh, Ghose Aurnab

机构信息

Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India.

Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhaba Road, Pune 411008, India

出版信息

Development. 2016 Feb 1;143(3):449-60. doi: 10.1242/dev.130104. Epub 2015 Dec 30.

Abstract

Growth cone filopodia are actin-based mechanosensory structures that are essential for chemoreception and the generation of contractile forces necessary for directional motility. However, little is known about the influence of filopodial actin structures on substrate adhesion and filopodial contractility. Formin 2 (Fmn2) localizes along filopodial actin bundles and its depletion does not affect filopodia initiation or elongation. However, Fmn2 activity is required for filopodial tip adhesion maturation and the ability of filopodia to generate traction forces. Dysregulation of filopodia in Fmn2-depleted neurons leads to compromised growth cone motility. Additionally, in mouse fibroblasts, Fmn2 regulates ventral stress fiber assembly and affects the stability of focal adhesions. In the developing chick spinal cord, Fmn2 activity is required cell-autonomously for the outgrowth and pathfinding of spinal commissural neurons. Our results reveal an unanticipated function for Fmn2 in neural development. Fmn2 regulates structurally diverse bundled actin structures, parallel filopodial bundles in growth cones and anti-parallel stress fibers in fibroblasts, in turn modulating the stability of substrate adhesions. We propose Fmn2 as a mediator of actin bundle integrity, enabling efficient force transmission to the adhesion sites.

摘要

生长锥丝状伪足是基于肌动蛋白的机械感觉结构,对于化学感受以及定向运动所需收缩力的产生至关重要。然而,关于丝状伪足肌动蛋白结构对底物黏附及丝状伪足收缩性的影响,人们了解甚少。formin 2(Fmn2)定位于丝状伪足肌动蛋白束上,其缺失并不影响丝状伪足的起始或伸长。然而,丝状伪足顶端黏附的成熟以及丝状伪足产生牵引力的能力需要Fmn2的活性。Fmn2缺失的神经元中丝状伪足的失调会导致生长锥运动性受损。此外,在小鼠成纤维细胞中,Fmn2调节腹侧应力纤维组装并影响黏着斑的稳定性。在发育中的鸡脊髓中,脊髓连合神经元的生长和路径寻找需要细胞自主的Fmn2活性。我们的结果揭示了Fmn2在神经发育中一个意想不到的功能。Fmn2调节结构多样的肌动蛋白束结构,生长锥中的平行丝状伪足束和成纤维细胞中的反平行应力纤维,进而调节底物黏附的稳定性。我们提出Fmn2作为肌动蛋白束完整性的介质,使力能够有效地传递到黏附位点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验