Suppr超能文献

心脏产热

Cardiac heat production.

作者信息

Gibbs C L, Chapman J B

出版信息

Annu Rev Physiol. 1979;41:507-19. doi: 10.1146/annurev.ph.41.030179.002451.

Abstract

The energy production (heat + work) of cardiac muscle must be interpreted in terms of the major ATPases underwriting cardiac contraction; these are the Ca2+ and Na+-K+ transport ATPases and actomyosin ATPase. It is possible to apply the classical phenomenological subdivisions to cardiac energy production; when this is done, certain properties immediately distinguish cardiac muscle from skeletal muscle. Little or no temporal distinction exists between initial (anaerobic) and recovery (oxidative) metabolism. Even at temperatures as low as 20 degrees C most of the recovery heat is released within the time course of a single contraction. Cardiac muscle is characterized by a high resting heat rate, the magnitude of which varies between species and depends on the metabolic substrate. In isometric contractions there is a slightly curvilinear relationship between developed force and heat production. There is a tension-independent or activation component, the magnitude of which reflects the prevailing level of contractility and is probably associated with calcium release and retrieval. In isotonic contractions energy production is maximal when the muscle is heavily loaded but falls steeply when the size of the load is reduced. The enthalpy:load relation is probably similar to that found in twitch contractions of skeletal muscle working at room temperature or above; but, unlike for skeletal muscle, there are families of such curves: At any instant of time the relation depends upon the prevailing physiological conditions (e.g. stimulus rate, substrate supply, humoral agents, extracellular ionic concentrations, initial length). Cardiac energy production can be estimated by a variety of other techniques (such as high-energy phosphate utilization, oxygen consumption, and changes in tissue fluorescence related to pyridine nucleotide oxidation levels). At the present time there is considerable agreement between heat measurements and results obtained with these different techniques. We should like to conclude on a cautionary note. First, there is considerable variability in the properties of cardiac muscle from different species. Significant variations occur at nearly all levels of cellular function--e.g. shape of action potential, electrical and mechanical dependence upon stimulus history, mechanisms of excitation-contraction coupling, actomyosin ATPase activity, metabolic regulation, and differential sensitivity to anoxia or ischemia. Second, the types of contractions readily studied in isolated papillary muscles (i.e. isometric or isotonic twitches) may not necessarily be the best mechanical paradigms for understanding myocardial energetics in vivo. The particular geometric demands of individual research techniques require the use of a wide variety of myocardial preparations from a wide variety of species. This necessarily produces a pastiche view of cardiac muscle rather than an integrated picture of some hypothetically typical mammalian myocardium.

摘要

心肌的能量产生(热量+功)必须根据支持心脏收缩的主要ATP酶来解释;这些酶是Ca2+和Na+-K+转运ATP酶以及肌动球蛋白ATP酶。可以将经典的唯象学细分应用于心脏能量产生;当这样做时,某些特性立即将心肌与骨骼肌区分开来。初始(无氧)代谢和恢复(氧化)代谢之间几乎没有时间上的区别。即使在低至20摄氏度的温度下,大部分恢复热也在单次收缩的时间过程中释放。心肌的特点是静息热率高,其大小因物种而异,并取决于代谢底物。在等长收缩中,产生的力与热量产生之间存在略微的曲线关系。存在一个与张力无关或激活成分,其大小反映了收缩力的当前水平,可能与钙的释放和回收有关。在等张收缩中,当肌肉承受重负荷时能量产生最大,但当负荷大小减小时急剧下降。焓:负荷关系可能与在室温或更高温度下工作的骨骼肌单收缩中发现的关系相似;但是,与骨骼肌不同,存在这样的曲线族:在任何时刻,这种关系取决于当前的生理条件(例如刺激频率、底物供应、体液因子、细胞外离子浓度、初始长度)。心脏能量产生可以通过多种其他技术来估计(例如高能磷酸利用、氧气消耗以及与吡啶核苷酸氧化水平相关的组织荧光变化)。目前,热量测量结果与通过这些不同技术获得的结果之间存在相当大的一致性。我们想以一个警示性的说明来结束。首先,不同物种的心肌特性存在相当大的变异性。在几乎所有细胞功能水平上都发生显著变化——例如动作电位的形状、对刺激历史的电和机械依赖性、兴奋-收缩偶联机制、肌动球蛋白ATP酶活性、代谢调节以及对缺氧或缺血的不同敏感性。其次,在分离的乳头肌中容易研究的收缩类型(即等长或等张单收缩)不一定是理解体内心肌能量学的最佳力学范例。个别研究技术的特定几何要求需要使用来自多种物种的多种心肌标本。这必然会产生对心肌的拼凑观点,而不是对某些假设的典型哺乳动物心肌的综合图景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验