Suppr超能文献

肥厚型心肌病 ACTC E99K 转基因小鼠模型乳头肌的力学和能量学特性。

Mechanical and energetic properties of papillary muscle from ACTC E99K transgenic mouse models of hypertrophic cardiomyopathy.

机构信息

National Heart and Lung Institute, Imperial College London, London, United Kingdom.

出版信息

Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1513-24. doi: 10.1152/ajpheart.00951.2012. Epub 2013 Apr 19.

Abstract

We compared the contractile performance of papillary muscle from a mouse model of hypertrophic cardiomyopathy [α-cardiac actin (ACTC) E99K mutation] with nontransgenic (non-TG) littermates. In isometric twitches, ACTC E99K papillary muscle produced three to four times greater force than non-TG muscle under the same conditions independent of stimulation frequency and temperature, whereas maximum isometric force in myofibrils from these muscles was not significantly different. ACTC E99K muscle relaxed slower than non-TG muscle in both papillary muscle (1.4×) and myofibrils (1.7×), whereas the rate of force development after stimulation was the same as non-TG muscle for both electrical stimulation in intact muscle and after a Ca²⁺ jump in myofibrils. The EC₅₀ for Ca²⁺ activation of force in myofibrils was 0.39 ± 0.33 μmol/l in ACTC E99K myofibrils and 0.80 ± 0.11 μmol/l in non-TG myofibrils. There were no significant differences in the amplitude and time course of the Ca²⁺ transient in myocytes from ACTC E99K and non-TG mice. We conclude that hypercontractility is caused by higher myofibrillar Ca²⁺ sensitivity in ACTC E99K muscles. Measurement of the energy (work + heat) released in actively cycling heart muscle showed that for both genotypes, the amount of energy turnover increased with work done but with decreasing efficiency as energy turnover increased. Thus, ACTC E99K mouse heart muscle produced on average 3.3-fold more work than non-TG muscle, and the cost in terms of energy turnover was disproportionately higher than in non-TG muscles. Efficiency for ACTC E99K muscle was in the range of 11-16% and for non-TG muscle was 15-18%.

摘要

我们比较了肥厚型心肌病小鼠模型[α-心肌肌球蛋白重链(ACTC)E99K 突变]的乳头肌与非转基因(非-TG)同窝仔鼠的收缩性能。在等长抽搐中,在相同条件下,与非-TG 肌肉相比,ACTC E99K 乳头肌产生的力大三到四倍,而这些肌肉的最大等长力没有显著差异。与非-TG 肌肉相比,ACTC E99K 肌肉在乳头肌(1.4 倍)和肌原纤维(1.7 倍)中舒张更慢,而在完整肌肉的电刺激和肌原纤维的 Ca²⁺跳跃后,刺激后的力发展速度与非-TG 肌肉相同。肌原纤维中力的 Ca²⁺激活的 EC₅₀在 ACTC E99K 肌原纤维中为 0.39±0.33 μmol/l,在非-TG 肌原纤维中为 0.80±0.11 μmol/l。ACTC E99K 和非-TG 小鼠心肌细胞内 Ca²⁺瞬变的幅度和时程没有显著差异。我们得出结论,高收缩性是由于 ACTC E99K 肌肉中的肌球蛋白 Ca²⁺敏感性更高所致。主动循环心肌中释放的能量(功+热)的测量表明,对于两种基因型,能量转换的量随着功的增加而增加,但随着能量转换的增加,效率降低。因此,ACTC E99K 小鼠心肌的平均功比非-TG 肌肉高 3.3 倍,而能量转换的成本比非-TG 肌肉高得不成比例。ACTC E99K 肌肉的效率在 11-16%之间,而非-TG 肌肉的效率在 15-18%之间。

相似文献

1
Mechanical and energetic properties of papillary muscle from ACTC E99K transgenic mouse models of hypertrophic cardiomyopathy.
Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1513-24. doi: 10.1152/ajpheart.00951.2012. Epub 2013 Apr 19.
2
Age- and strain-related aberrant Ca release is associated with sudden cardiac death in the ACTC E99K mouse model of hypertrophic cardiomyopathy.
Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1213-H1226. doi: 10.1152/ajpheart.00244.2017. Epub 2017 Sep 8.
3
Molecular mechanism of the E99K mutation in cardiac actin (ACTC Gene) that causes apical hypertrophy in man and mouse.
J Biol Chem. 2011 Aug 5;286(31):27582-93. doi: 10.1074/jbc.M111.252320. Epub 2011 May 26.
4
Development of apical hypertrophic cardiomyopathy with age in a transgenic mouse model carrying the cardiac actin E99K mutation.
J Muscle Res Cell Motil. 2017 Dec;38(5-6):421-435. doi: 10.1007/s10974-018-9492-1. Epub 2018 Mar 26.
6
A dilated cardiomyopathy mutation blunts adrenergic response and induces contractile dysfunction under chronic angiotensin II stress.
Am J Physiol Heart Circ Physiol. 2015 Dec 1;309(11):H1936-46. doi: 10.1152/ajpheart.00327.2015. Epub 2015 Oct 2.
7
Functional effects of a tropomyosin mutation linked to FHC contribute to maladaptation during acidosis.
J Mol Cell Cardiol. 2011 Mar;50(3):442-50. doi: 10.1016/j.yjmcc.2010.10.032. Epub 2010 Nov 1.
9
Discrete effects of A57G-myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy.
Am J Physiol Heart Circ Physiol. 2013 Aug 15;305(4):H575-89. doi: 10.1152/ajpheart.00107.2013. Epub 2013 Jun 7.

引用本文的文献

3
Strength training improves heart function, collagen and strength in rats with heart failure.
J Physiol Sci. 2024 Feb 16;74(1):10. doi: 10.1186/s12576-024-00899-3.
4
Contractility detection of isolated mouse papillary muscle using myotronic Myostation-Intact device.
Animal Model Exp Med. 2022 Oct;5(5):445-452. doi: 10.1002/ame2.12272. Epub 2022 Sep 27.
5
Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy.
Int J Mol Sci. 2022 Feb 16;23(4):2195. doi: 10.3390/ijms23042195.
6
Force Measurements From Myofibril to Filament.
Front Physiol. 2022 Jan 27;12:817036. doi: 10.3389/fphys.2021.817036. eCollection 2021.
7
Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do.
Front Bioeng Biotechnol. 2020 Aug 13;8:972. doi: 10.3389/fbioe.2020.00972. eCollection 2020.
8
Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics.
J Mol Cell Cardiol. 2020 Aug;145:43-53. doi: 10.1016/j.yjmcc.2020.06.003. Epub 2020 Jun 10.
10
Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits.
Stem Cell Reports. 2018 Nov 13;11(5):1226-1243. doi: 10.1016/j.stemcr.2018.10.006. Epub 2018 Nov 1.

本文引用的文献

2
Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice.
J Mol Cell Cardiol. 2012 Jun;52(6):1299-307. doi: 10.1016/j.yjmcc.2012.03.009. Epub 2012 Mar 23.
3
An innovative work-loop calorimeter for in vitro measurement of the mechanics and energetics of working cardiac trabeculae.
J Appl Physiol (1985). 2011 Dec;111(6):1798-803. doi: 10.1152/japplphysiol.00752.2011. Epub 2011 Sep 8.
4
Molecular mechanism of the E99K mutation in cardiac actin (ACTC Gene) that causes apical hypertrophy in man and mouse.
J Biol Chem. 2011 Aug 5;286(31):27582-93. doi: 10.1074/jbc.M111.252320. Epub 2011 May 26.
5
Inherited cardiomyopathies.
N Engl J Med. 2011 Apr 28;364(17):1643-56. doi: 10.1056/NEJMra0902923.
6
How do mutations in contractile proteins cause the primary familial cardiomyopathies?
J Cardiovasc Transl Res. 2011 Jun;4(3):245-55. doi: 10.1007/s12265-011-9266-2. Epub 2011 Mar 22.
7
Thin filament mutations: developing an integrative approach to a complex disorder.
Circ Res. 2011 Mar 18;108(6):765-82. doi: 10.1161/CIRCRESAHA.110.224170.
8
Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy.
Circulation. 2010 Oct 19;122(16):1562-9. doi: 10.1161/CIRCULATIONAHA.109.934059. Epub 2010 Oct 4.
9
Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility.
J Mol Cell Cardiol. 2010 May;48(5):824-33. doi: 10.1016/j.yjmcc.2010.01.011. Epub 2010 Jan 22.
10
Inferring crossbridge properties from skeletal muscle energetics.
Prog Biophys Mol Biol. 2010 Jan;102(1):53-71. doi: 10.1016/j.pbiomolbio.2009.10.003. Epub 2009 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验